Purpose: Catheter associated urinary tract infection is the most common type of hospital acquired infection. An understanding of catheter associated urinary tract infection pathogenesis is needed to improve the control and treatment of these infections. We investigated the relationship among catheter material, bacteria and bladder epithelial cell reaction.

Materials And Methods: Urinary catheter sections and a clinical isolate of Escherichia coli were added to human bladder carcinoma epithelial cells in vitro in combination or independently. The catheters were rotated for 30 seconds over the cells, followed by incubation. The cytokines interleukin-6 and 8 were measured by enzyme-linked immunosorbent assay as indicators of inflammation and cell membrane disruption was assessed using a lactate dehydrogenase assay.

Results: The levels of lactate dehydrogenase release and cytokine production depended on the number of bacteria added. Bacteria grown for 3 days caused greater secretion of cytokines than bacteria grown overnight. Silicone catheter material alone caused immediate damage to cells with increased lactate dehydrogenase in the supernatant but little interleukin-6 or 8 production. Silicone catheters caused significantly less cytokine secretion from bladder cells than latex catheters. Conversely bacteria caused little immediate damage to cells but stimulated cytokine production after 12 hours.

Conclusions: Disruption of bladder epithelial cell membranes in vitro occurred immediately as a result of physical abrasion caused by catheters but delayed inflammation occurred in response to bacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.juro.2008.06.012DOI Listing

Publication Analysis

Top Keywords

bladder epithelial
12
catheter material
12
urinary tract
12
tract infection
12
lactate dehydrogenase
12
epithelial cells
8
material bacteria
8
catheter associated
8
associated urinary
8
epithelial cell
8

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria.

Nat Commun

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The lower urinary tract, consisting of the bladder and urethra, develops from the cloaca, with the bladder forming from the urogenital sinus and the urethra extending into the genital tubercle.
  • Engineering a fully functional bladder lining is challenging, and the urethral epithelium's immune roles are under-researched, highlighting the need for a better understanding of the epithelial and mesenchymal interactions that drive development.
  • This study identified specific genes involved in bladder and urethra development in mice, revealing differences in gene expression patterns related to sex and offering insights for future regenerative therapies.
View Article and Find Full Text PDF

The development of noninvasive methods for bladder cancer identification remains a critical clinical need. Recent studies have shown that atomic force microscopy (AFM), combined with pattern recognition machine learning, can detect bladder cancer by analyzing cells extracted from urine. However, these promising findings were limited by a relatively small patient cohort, resulting in modest statistical significance.

View Article and Find Full Text PDF

Pet dogs offer valuable models for studying environmental impacts on human health due to shared environments and a shorter latency period for cancer development. We assessed environmental chemical exposures in a case-control study involving dogs at high risk of urothelial carcinoma, identified by a BRAF V595E mutation in urinary epithelial cells. Cases ( = 25) exhibited low-level BRAF mutations, while controls ( = 76) were matched dogs without the mutation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!