Background: Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them.

Results: In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the enhanced partial order (EPO) algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study on miniprotein Trp-cage 1 demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events.

Conclusion: The EPO algorithm is general and applicable to a wide range of applications. We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities. For user's convenience, we provide a web server for the algorithm at http://db.cse.ohio-state.edu/EPO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2571979PMC
http://dx.doi.org/10.1186/1471-2105-9-344DOI Listing

Publication Analysis

Top Keywords

folding trajectories
12
epo algorithm
12
enhanced partial
8
partial order
8
curve comparison
8
algorithm
7
folding
7
order curve
4
comparison algorithm
4
algorithm application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!