Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6')-Ib variant, AAC(6')-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6')-Ib-wt and its bifunctional variant AAC(6')-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6')-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 A. Observation of the direct, and optimally positioned, interaction between the 6'-NH 2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6')-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6')-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes pi-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6')-Ib-wt and the AAC(6')-Ib-cr variant involving a ternary complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855648PMC
http://dx.doi.org/10.1021/bi800664xDOI Listing

Publication Analysis

Top Keywords

aac6'-ib-cr variant
12
variant aac6'-ib-cr
8
structure aac6'-ib-wt
8
model suggests
8
aac6'-ib-cr
5
variant
5
mechanistic structural
4
structural analysis
4
aminoglycoside
4
analysis aminoglycoside
4

Similar Publications

Inferior sectoral chorioretinopathy in two patients with novel heterozygous mutations.

Ophthalmic Genet

January 2025

Departments of Medical Genetics and Ophthalmology & Visual Sciences, University of Alberta, Edmonton, Alberta, Canada.

Background: Pathogenic variants in , a kinesin family gene, cause MCLMR and FEVR. In MCLMR, chorioretinal atrophy is present in the majority of cases and can be a helpful diagnostic sign.

Cases: We present the cases of two patients with chorioretinal atrophy and microcephaly who carry novel mutations.

View Article and Find Full Text PDF

Purpose: The purpose of this manuscript is to report a rare case of an orbital cyst detected intrauterine with sonography.

Observation: A 23-year-old female presented for routine prenatal monitoring when an orbital cyst was detected with a transabdominal ultrasound. Uncomplicated cesarean section was performed at 38 weeks gestation with proptosis of the left globe being noted on ophthalmic examination of the newborn.

View Article and Find Full Text PDF

To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.

View Article and Find Full Text PDF

Unlabelled: The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

Variant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!