The Varroa mite ( Varroa destructor) is becoming ubiquitous worldwide and is a serious threat to honey bees. The cultivation of certain food crops are at risk. The most noted acaricides against Varroa mites are tau-fluvaninate and coumaphos, but the mites are showing resistance. Since these insecticides are used in the proximity of honey, it is desirable to use natural alternatives. Monoterpenoids such as thymol and carvacrol, that are constituents of oil of thyme and oil of origanum, show promise as acaricides against the Varroa mite ( Varroa destructor), but the delivery of these compounds remains a challenge due to the low water solubility and uncontrolled release into the colony. Beta-cyclodextrin (beta-CD) inclusion complexes of thymol, oil of origanum, and carvacrol were prepared on a preparative scale. Competitive binding was studied by fluorescence spectroscopy by using 6- p-toluidinylnaphthalene-2-sulfonate as a fluorescent probe. The complexes were characterized, and the competitive binding described by (1)H and (13)C NMR spectroscopy chemical shifts. The toxicity of beta-CD and the prepared complexes in enriched sucrose syrup was studied by conducting caged honey bee ( Apis mellifera) feeding trials. After the first and second weeks of feeding, hemolymph and gut tissue samples were acquired from the caged bee study. The levels of thymol and carvacrol were quantified by solid-phase microextraction gas chromatography mass spectroscopy, using an optimized procedure we developed. High (mM) levels of thymol and carvacrol were detected in bee tissues without any imposed toxicity to the bees, in an effort to deter Varroa mites from feeding on honey bee hemolymph.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf801607c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!