This paper describes an automated method for sequence-specific NMR assignment of the aliphatic resonances of protein side chains in small- and medium-sized globular proteins in aqueous solution. The method requires the recording of a five-dimensional (5D) automated projection spectroscopy (APSY-) NMR experiment and the subsequent analysis of the APSY peak list with the algorithm ALASCA (Algorithm for local and linear assignment of side chains from APSY data). The 5D APSY-HC(CC-TOCSY)CONH experiment yields 5D chemical shift correlations of aliphatic side chain C-H moieties with the backbone atoms H(N), N, and C'. A simultaneous variation of the TOCSY mixing times and the projection angles in this APSY-type TOCSY experiment gives access to all aliphatic C-H moieties in the 20 proteinogenic amino acids. The correlation peak list resulting from the 5D APSY-HC(CC-TOCSY)CONH experiment together with the backbone assignment of the protein under study is the sole input for the algorithm ALASCA that assigns carbon and proton resonances of protein side chains. The algorithm is described, and it is shown that the aliphatic parts of 17 of the 20 common amino acid side chains are assigned unambiguously, whereas the remaining three amino acids are assigned with a certainty of above 95%. The overall feasibility of the approach is demonstrated with the globular 116-residue protein TM1290, for which reference assignments are known. For this protein, 97% of the expected side chain carbon atoms and 87% of the expected side chain protons were detected with the 5D APSY-HC(CC-TOCSY)CONH experiment in 24 h of spectrometer time, and all these resonances were correctly assigned by ALASCA. Based on the experience with TM1290, we expect that the approach presented in this work is routinely applicable to globular proteins with sizes up to at least 120 amino acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja803161d | DOI Listing |
J Med Chem
January 2025
Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China.
Multidrug-resistant (MDR) bacteria pose a global health threat, underscoring the need for new antibiotics. Lefamulin, the first novel-mechanism antibiotic approved by the FDA in decades, showcases pleuromutilins' promise due to low mutation frequency. However, their clinical use is limited by poor pharmacokinetics and organ toxicity.
View Article and Find Full Text PDFChemistry
January 2025
University of Windsor Faculty of Science, Chemistry & Biochemsitry, 401 Sunset Avenue, N9B 3P4, Windsor, CANADA.
Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
As an effective method to enhance the dielectric performance of polyolefin materials, polar side group modification has been extensively applied in the insulation and energy storage materials of electrical and electronic systems. In this work, two side groups with different topological structures were adopted, namely, vinyl acetate (VAc, aliphatic chain) and -vinyl-pyrrolidone (NVP, saturated ring), to modify polypropylene (PP) chemical grafting, and the effects of structural topology of the polar side group on the microscopic and macroscopic characteristics of PP, particularly on its electrical anti-breakdown ability, were investigated. Experimental results showed that the side group structural topology directly affected the crystallization and thermal properties of PP.
View Article and Find Full Text PDFNanoscale
January 2025
Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
Targeted delivery offers solutions for more efficient therapies with fewer side effects. Here, lipopeptides (LPs) prepared by conjugation of the nuclear-targeting peptide analogue H-YKQSHKKGGKKGSG-NH (NrTP6) and two lauric acid chains are used to encapsulate the chemotherapeutic agent doxorubicin (DX) through a solvent-exchange protocol. LPs spontaneously form nanosized rod-like assemblies in phosphate buffer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!