The last century of food animal agriculture is a remarkable triumph of scientific research. Knowledge derived through research has resulted in the development and use of new technologies that have increased the efficiency of food production and created a huge animal production and food manufacturing industry capable of feeding the US population while also providing significant quantities of high-quality food for export to other countries. Although the US food supply is among the safest in the world, the US Center for Disease Prevention and Control estimates that 76 million people get sick, more than 300,000 are hospitalized, and 5,000 die each year from foodborne illness. Consequently, preventing foodborne illness and death remains a major public health concern. Challenges to providing a safe, abundant, and nutritious food supply are complex because all aspects of food production, from farm to fork, must be considered. Given the national and international demand and expectations for food safety as well as the formidable challenges of producing and maintaining a safe food supply, food safety research and educational programs have taken on a new urgency. Remarkable progress has been made during the last century. Wisdom from a century of animal agriculture research now includes the realization that on-farm pathogens are intricately associated with animal health and well-being, the production of high-quality food, and profitability. In this review, some of the developments that have occurred over the last few decades are summarized, including types, sources, and concentrations of disease-causing pathogens encountered in food-producing animal environments and their association with food safety; current and future methods to control or reduce foodborne pathogens on the farm; and present and future preharvest food safety research directions. Future scientific breakthroughs will no doubt have a profound impact on animal agriculture and the production of high-quality food, but we will also be faced with moral, ethical, and societal dilemmas that must be reconciled. A strong, science-based approach that addresses all the complex issues involved in continuing to improve food safety and public health is necessary to prevent foodborne illnesses. Not only must research be conducted to solve complex food safety issues, but results of that research must also be communicated effectively to producers and consumers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2527/jas.2008-2008-1151 | DOI Listing |
Eur J Clin Nutr
January 2025
Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China.
Background/objectives: Understanding the dynamic changes in nutritional status of patients with non-Hodgkin's lymphoma (NHL) during chemotherapy is crucial, as it significantly impacts chemotherapy-related toxicity and survival outcomes.
Subjects/methods: This multi-center study included newly diagnosed NHL patients. Nutritional status and chemotherapy-related toxic effects were assessed over the first five chemotherapy sessions, with follow-ups conducted every 3 months.
Childhood obesity poses a significant public health challenge, yet the molecular intricacies underlying its pathobiology remain elusive. Leveraging extensive multi-omics profiling (methylome, miRNome, transcriptome, proteins and metabolites) and a rich phenotypic characterization across two parts of Europe within the population-based Human Early Life Exposome project, we unravel the molecular landscape of childhood obesity and associated metabolic dysfunction. Our integrative analysis uncovers three clusters of children defined by specific multi-omics profiles, one of which characterized not only by higher adiposity but also by a high degree of metabolic complications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.
Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Cantonese sausages are susceptible to oxidative deterioration during storage. Compared with synthetic antioxidants, dihydromyricetin (DMY) is a natural active substance with various functions such as antioxidant and antimicrobial. In this study, edible coating solutions loaded with DMY were prepared based on chitosan (CS) and pullulan (PUL) to prolong the shelf-life of Cantonese sausages.
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan; Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan. Electronic address:
A first-in-human investigator-initiated clinical study of a corneal endothelial cell substitute (CLS001) derived from a clinical-grade induced pluripotent stem cell (iPSC) line shows improvement of visual acuity and corneal stromal edema, with no adverse events for up to 1 year after surgery for the treatment of bullous keratopathy. While preclinical tests, including multiple whole-genome analysis and tumorigenicity tests adhering to the Food and Drug Administration (FDA) draft guidelines, are negative, an additional whole-genome analysis conducted on transplanted CLS001 cells reveals a de novo in-frame deletion of exon22 in the EP300 gene. No adverse events related to the mutation are observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!