Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bortezomib (Velcade/PS341), a proteasome inhibitor used in the treatment of multiple myeloma (MM), can inhibit activation of nuclear factor-kappaB (NF-kappaB), a family of transcription factors often deregulated and constitutively activated in primary MM cells. NF-kappaB can be activated via several distinct mechanisms, including the proteasome inhibitor-resistant (PIR) pathway. It remains unknown what fraction of primary MM cells harbor constitutive NF-kappaB activity maintained by proteasome-dependent mechanisms. Here, we report an unexpected finding that constitutive NF-kappaB activity in 10 of 14 primary MM samples analyzed is refractory to inhibition by bortezomib. Moreover, when MM cells were cocultured with MM patient-derived bone marrow stromal cells (BMSC), microenvironment components critical for MM growth and survival, further increases in NF-kappaB activity were observed that were also refractory to bortezomib. Similarly, MM-BMSCs caused PIR NF-kappaB activation in the RPMI8226 MM cell line, leading to increased NF-kappaB-dependent transcription and resistance to bortezomib-induced apoptosis. Our findings show that primary MM cells frequently harbor PIR NF-kappaB activity that is further enhanced by the presence of patient-derived BMSCs. They also suggest that this activity is likely relevant to the drug resistance development in some patients. Further elucidation of the mechanism of PIR NF-kappaB regulation could lead to the identification of novel diagnostic biomarkers and/or therapeutic targets for MM treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587345 | PMC |
http://dx.doi.org/10.1158/1541-7786.MCR-08-0108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!