A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thickness profiles of retinal layers by optical coherence tomography image segmentation. | LitMetric

Purpose: To report an image segmentation algorithm that was developed to provide quantitative thickness measurement of six retinal layers in optical coherence tomography (OCT) images.

Design: Prospective cross-sectional study.

Methods: Imaging was performed with time- and spectral-domain OCT instruments in 15 and 10 normal healthy subjects, respectively. A dedicated software algorithm was developed for boundary detection based on a 2-dimensional edge detection scheme, enhancing edges along the retinal depth while suppressing speckle noise. Automated boundary detection and quantitative thickness measurements derived by the algorithm were compared with measurements obtained from boundaries manually marked by three observers. Thickness profiles for six retinal layers were generated in normal subjects.

Results: The algorithm identified seven boundaries and measured thickness of six retinal layers: nerve fiber layer, inner plexiform layer and ganglion cell layer, inner nuclear layer, outer plexiform layer, outer nuclear layer and photoreceptor inner segments (ONL+PIS), and photoreceptor outer segments (POS). The root mean squared error between the manual and automatic boundary detection ranged between 4 and 9 mum. The mean absolute values of differences between automated and manual thickness measurements were between 3 and 4 mum, and comparable to interobserver differences. Inner retinal thickness profiles demonstrated minimum thickness at the fovea, corresponding to normal anatomy. The OPL and ONL+PIS thickness profiles respectively displayed a minimum and maximum thickness at the fovea. The POS thickness profile was relatively constant along the scan through the fovea.

Conclusions: The application of this image segmentation technique is promising for investigating thickness changes of retinal layers attributable to disease progression and therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590782PMC
http://dx.doi.org/10.1016/j.ajo.2008.06.010DOI Listing

Publication Analysis

Top Keywords

retinal layers
20
thickness profiles
16
thickness
12
image segmentation
12
boundary detection
12
profiles retinal
8
layers optical
8
optical coherence
8
coherence tomography
8
algorithm developed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!