The divergence of premating behavior and morphology plays a primary role in speciation, and an understanding of the genetic architectures of these phenotypes is essential for the evaluation of models of the speciation process. However, our empirical knowledge of the genetics underlying speciation-related traits remains limited. In this article, we argue that a dissection of specific aspects of the genetic architecture of such traits in a comparative context can allow us to rule out some mechanisms of divergence. We discuss these ideas with reference to our investigation of intersexual communication behaviors involved in mate recognition in the Hawaiian cricket genus Laupala. Different species of Laupala sing distinctively and show species-specific acoustic preferences. We focus on the sister species Laupala paranigra and Laupala kohalensis, characterized by differences in these classic courtship phenotypes. We discuss our preliminary results on the directionality of effect of substituted alleles underlying these species differences. We then discuss these results in the context of historical inference, a necessary perspective for testing the genomic predictions made by theories of speciation that focus on evolution of mate recognition systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/338373 | DOI Listing |
J Neurophysiol
January 2025
Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
Social and sensory experiences across the lifespan can shape social interactions, however, experiencedependent plasticity is widely studied within discrete life stages. In the socially monogamous zebra finch, in which females use learned vocal signals to identify individuals and form long-lasting pair bonds, developmental exposure to song is key for females to show species-typical song perception and preferences. While adult mating experience can still lead to pair-bonding and song preference learning even in birds with limited previous song exposure ("song-naïve"), whether similarities in adult behavioral plasticity between normally-reared and song-naïve females reflect convergent patterns of neural activity is unknown.
View Article and Find Full Text PDFInsects
December 2024
Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 19 Poleczki St., 02-822 Warsaw, Poland.
The majority of insects reproduce sexually. Among the many factors involved in controlling the reproductive process, cuticular lipids play an important role as unique chemical signatures of species, developmental stage, and sex, and participate in mate recognition. An understanding of the sex- and metamorphosis-related fluctuations in the cuticular lipid profiles of harmful insects is necessary to hamper their reproductive process.
View Article and Find Full Text PDFInsects
November 2024
Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 West Truck Road, Buzzards Bay, MA 02542, USA.
The Asian longhorned beetle, (Coleoptera: Cerambycidae: Lamiinae), is a serious pest of over 43 species of hardwood trees in North America, China and Europe. The development of an effective lure and trap for monitoring has been hindered by the fact that mate finding involves a rather complex series of behaviors and responses to several chemical (and visual), cues. Adults (female-biased) locate a tree via host kairomones.
View Article and Find Full Text PDFAnn N Y Acad Sci
December 2024
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
What makes animal gaits so audibly rhythmic? To answer this question, we recorded the footfall sound of 19 horses and quantified the rhythmic differences in the temporal structure of three natural gaits: walk, trot, and canter. Our analyses show that each gait displays a strikingly specific rhythmic pattern and that all gaits are organized according to small-integer ratios, those found when adjacent temporal intervals are related by a mathematically simple relationship of integer numbers. Walk and trot exhibit an isochronous structure (1:1)-similar to a ticking clock-while canter is characterized by three small-integer ratios (1:1, 1:2, 2:1).
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA.
Mate limitation in small populations can reduce reproductive fitness, hinder population growth, and increase extinction risk. Mate limitation is exacerbated in self-incompatible (SI) taxa, where shared S-alleles further restrict mating. Theory suggests genetic drift as a predictor of mate limitation and the breakdown of SI systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!