Perceptual learning of visual features occurs when multiple stimuli are presented in a fixed sequence (temporal patterning), but not when they are presented in random order (roving). This points to the need for proper stimulus coding in order for learning of multiple stimuli to occur. We examined the stimulus coding rules for learning with multiple stimuli. Our results demonstrate that: (1) stimulus rhythm is necessary for temporal patterning to take effect during practice; (2) learning consolidation is subject to disruption by roving up to 4 h after each practice session; (3) importantly, after completion of temporal-patterned learning, performance is undisrupted by extended roving training; (4) roving is ineffective if each stimulus is presented for five or more consecutive trials; and (5) roving is also ineffective if each stimulus has a distinct identity. We propose that for multi-stimulus learning to occur, the brain needs to conceptually "tag" each stimulus, in order to switch attention to the appropriate perceptual template. Stimulus temporal patterning assists in tagging stimuli and switching attention through its rhythmic stimulus sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504489 | PMC |
http://dx.doi.org/10.1371/journal.pbio.0060197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!