Adsorption behavior and water content of adsorbed layers of four dispersants for aqueous ceramic processing were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) on alumina surfaces. The dispersants were a poly(acrylic acid), a lignosulfonate, and two hydrophilic comb copolymers with nonionic polyoxyethylene chains of different molecular weights. A Voigt model was applied to analyze the viscoelastic behavior of the adsorbed dispersant layers. The results from QCM-D were compared with viscoelastic properties determined by in situ dynamic rheology measurements of highly concentrated alumina suspensions during slip casting. The QCM-D results showed that both the poly(acrylic acid) and the lignosulfonate adsorbed in low amounts and in a flat conformation, which generated thin, highly rigid layers less than 1 nm thick. The water content of these layers was found to be around 30% for the lignosulfonate and 35% for the poly(acrylic acid). High casting rate and strength in terms of storage modulus were observed in the final consolidate of the suspensions with the two polyelectrolytes. In contrast, the high molecular weight comb copolymer adsorbed in a less elastic layer with a thickness of about 6 nm, which is enough to provide steric stabilization. The viscous behavior of this layer was attributed to high water content, which was calculated to be around 90%. Such a water-rich layer gives a lubrication effect, which allows for reorientation of particles during the consolidation process, resulting in a high final strength of the ceramic material. During consolidation, the suspension showed a slow casting rate, most likely due to rearrangement facilitated by the lubricating layer. The short-chain comb copolymer adsorbed in a 1.5 nm thick, rigid layer and gave low final strength to the consolidated suspension. It is likely that the poor consolidation behavior is caused by flocculation due to insufficient stabilization of the dispersion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la800719u | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.
Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.
Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.
Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.
View Article and Find Full Text PDFViruses
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, "Grigore. T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!