Redesign of glutathione transferases (GSTs) has led to enzymes with remarkably enhanced catalytic properties. Exchange of substrate-binding residues in GST A1-1 created a GST A4-4 mimic, called GIMFhelix, with >300-fold improved activity with nonenal and suppressed activity with other substrates. In the present investigation GIMFhelix was compared with the naturally-evolved GSTs A1-1 and A4-4 by determining catalytic efficiencies with nine alternative substrates. The enzymes can be represented by vectors in multidimensional substrate-activity space, and the vectors of GIMFhelix and GST A1-1, expressed in kcat/Km values for the alternative substrates, are essentially orthogonal. By contrast, the vectors of GIMFhelix and GST A4-4 have approximately similar lengths and directions. The broad substrate acceptance of GST A1-1 contrasts with the high selectivity of GST A4-4 and GIMFhelix for alkenal substrates. Multivariate analysis demonstrated that among the diverse substrates used, nonenal, cumene hydroperoxide, and androstenedione are major determinants in the portrayal of the three enzyme variants. These GST substrates represent diverse chemistries of naturally occurring substrates undergoing Michael addition, hydroperoxide reduction, and steroid double-bond isomerization, respectively. In terms of function, GIMFhelix is a novel enzyme compared to its progenitor GST A1-1 in spite of 94% amino-acid sequence identity between the enzymes. The redesign of GST A1-1 into GIMFhelix therefore serves as an illustration of divergent evolution leading to novel enzymes by minor structural modifications in the active site. Notwithstanding low sequence identity (60%), GIMFhelix is functionally an isoenzyme of GST A4-4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2008.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!