Apatite formation on the surface of titanium and its alloys is effective for inducing osteoconductivity when implanted in bony defects. The aim of this study was to investigate the effects of thermal oxidation on apatite formation in macro-grooves on Ti-15Zr-4Ta-4Nb. Thermal oxidation at 500 and 600 degrees C in air led to modification of the Ti-15Zr-4Ta-4Nb surface to rutile phase titanium oxide. Ti-15Zr-4Ta-4Nb thermally oxidized at 500 degrees C in air showed no changes in metallographic structure, but not at 600 degrees C. After soaking in a simulated body fluid for 7days, the formation of apatite could be observed on the internal surfaces of macro-grooves 500mum deep and wide on Ti-15Zr-4Ta-4Nb thermally oxidized at 500 and 600 degrees C in air. These results indicate the potential for osteoconductivity of Ti-15Zr-4Ta-4Nb without changing its metallographic structure, by fabricating only the macro-grooves, i.e., spatial design, and by performing thermal oxidation at 500 degrees C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2008.07.014 | DOI Listing |
Sci Rep
January 2025
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.
Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.
View Article and Find Full Text PDFSci Rep
January 2025
Northwest Oilfield Company, SINOPEC, Ürümqi, 830011, China.
Deep oil reservoirs are becoming increasingly significant fields of hydrocarbon exploration in recent decades. Hydrothermal fluid flow is deemed as a potentially crucial factor affecting the occurrence of deep oil reservoirs, such as enhancing porosity/permeability of reservoirs, accelerating oil generation and thermal cracking, and modifying organic properties of crude oils. Understanding the interplay between hydrothermal fluids and crude oils would provide useful constraints for reconstructing hydrocarbon accumulation processes and predicting the distribution patterns of crude oils.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
In this study, we used desert soil from Gansu, China, as a sample to propose a method for designing hyperspectral stealth coatings against desert soil backgrounds within the spectral range of 400-2500 nm, and the corresponding coating was prepared. Firstly, the correlation between the composition and typical spectral detected characteristics of the desert soil was systematically analyzed. It was found that the color and the spectrum of the desert soil in the range of 400-1000 nm were influenced by different types of iron oxides.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:
Iron deficiency anemia (IDA) is a prevalent nutritional deficiency problem. This study aimed to investigate the characteristics of Choerospondias axillaris polysaccharide-Fe (III) complex and its effect on IDA mice. CAP-Fe (III) complex was synthesized by co-thermal synthesis method with an iron content of 27.
View Article and Find Full Text PDFBiomater Adv
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland. Electronic address:
The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!