Anaerobic biodegradation of high strength 2-chlorophenol-containing synthetic wastewater in a fixed bed reactor.

Chemosphere

Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, University of Karlsruhe, Karlsruhe, Germany.

Published: October 2008

In this study the continuous treatment of 2-chlorophenol (2-CP) containing synthetic wastewater at increasing concentrations up to 2600 mg L-1 in an anaerobic fixed bed reactor was achieved. As a source of microorganisms municipal sewage sludge was acclimatised to maximally 50 mg L-1 2-CP by 3 successive feedings within 1.5 months. Then, an anaerobic fixed bed reactor was inoculated with this sludge and was operated for 318 d, during which the 2-CP influent concentration was stepwise increased from 50 to 2600 mg L-1 within 265 d. At a hydraulic retention time (HRT) of 2.2 d the 2-CP loading rate was 2 g L-1 d-1 and the average 2-CP removal rate was 0.87 g L-1 d-1, accounting for 73% removal. This is the highest 2-CP removal rate ever reported. The negative effect of a 2-CP loading rate of 1.36 g L-1 d-1 on 2-CP removal was reversible within 2 wk when lower loading conditions (e.g. 0.76 g 2-CP L-1 d-1) were re-established. The median chloride ion release per unit 2-CP degraded was 0.24, which was reasonably close to the theoretically expected value of 0.28. In a batch assay, carried out with relatively clear reactor effluent, the highest removal rate of 2-CP was 175 mg L-1 d-1. At the time of reactor termination on day 318, the 2-CP removal rate by the biofilm in the reactor was 0.61 g L-1 d-1, corresponding to a HRT of 3.4 d and a 2-CP loading rate of 0.76 g L-1 d-1. At these very stable conditions removal of COD was 84% and of 2-CP 81%

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.06.072DOI Listing

Publication Analysis

Top Keywords

l-1 d-1
28
2-cp removal
16
removal rate
16
2-cp
14
fixed bed
12
bed reactor
12
2-cp loading
12
loading rate
12
l-1
10
synthetic wastewater
8

Similar Publications

Frequent changes in altitude and oxygen levels limit the practical application of traditionally derived exercise thresholds or training zones based on heart rate (HR) or blood lactate concentration (bLa). We investigated the transferability of a muscle oxygenation (SmO)-based intensity prescription between different hypoxic conditions to assess the suitability of real-time SmO measurements for ski-mountaineering (SKIMO) athletes during submaximal endurance exercise. A group of 15 well-trained male SKIMO athletes performed a graded-intensity run test in normoxia (87 m ASL, FiO = 20.

View Article and Find Full Text PDF

Coimmobilized Dual Enzymes in a Continuous Flow Reactor for the Efficient Synthesis of Optically Pure γ/δ-Lactones.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China.

Enzyme catalysis is a promising method for producing chiral chemicals with high stereoselectivity under mild conditions. However, the traditional batch reaction suffers from low enzyme stability, low cofactor recycling, and poor enzyme reusability. Here, we present a continuous-flow method using coimmobilized dual enzymes for the synthesis of chiral γ-/δ-lactones, which are widely used in fragrances and flavors.

View Article and Find Full Text PDF

Benzene, toluene, ethylbenzene, and xylene (BTEX) can be found in marine and estuarine waters due to accidental spills of oil and derivatives, as well as in production water and effluents discharged from petrochemical plants. Addressing the bioremediation of these compounds in saline environments and effluents with elevated salinity levels is imperative. In this study, the halotolerance of Aspergillus niger was assessed by subjecting it to a stepwise increase in salinity, achieved through progressive addition of NaCl from 2 to 30‰ (v/v).

View Article and Find Full Text PDF

Study on Newly Isolated Strains from Reunion Island as Potential Sources of High-Value Carotenoids.

Foods

December 2024

Laboratoire de Chimie et de Biotechnologie des Produits Naturels, ChemBioPro (EA2212), Université de la Réunion, 15 Avenue René Cassin, FR-97490 Sainte-Clotilde, La Réunion, France.

Certain secondary carotenoids, such as astaxanthin and canthaxanthin, are of growing economic interest in the fields of human nutrition, food, health and cosmetics, as well as feed and aquaculture, particularly due to their numerous biological activities, such as their remarkable antioxidant properties. The present study was devoted to assessing, in a photobioreactor, the feasibility of cultivating newly isolated strains from the biodiversity of Reunion Island for the production of these valuable xanthophylls. The results showed that all these strains were capable of producing and accumulating canthaxanthin and astaxanthin in response to environmental stresses.

View Article and Find Full Text PDF

Acute Ecotoxicity and Bioconcentration Tests for Se(IV) in Nile tilapia ().

ACS Omega

December 2024

National Institute for Alternative Technologies for Detection, Toxicological Assessment and Removal of Emerging Micropollutants and Radioactives (INCT-DATREM), Department of Chemistry and Environmental Science, São Paulo State University (UNESP), São José do Rio Preto, SP, 15054-000, Brazil.

Selenium is one of the most important trace element micronutrients for the global biota, mainly due to its role in protecting against oxidative stress. However, this element can become toxic when present at concentrations slightly higher than those needed for metabolic purposes. It can be transferred through the food chain toward higher trophic levels, with bioaccumulation and biomagnification leading to possible toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!