An in situ plated lead film electrode has been applied for adsorptive stripping voltammetric determination of trace concentrations of molybdenum in the presence of Alizarin S. The procedure is based on the preconcentration of the molybdenum-Alizarin S complex at an in situ plated lead film electrode held at -0.6 V (versus Ag/AgCl), followed by a negatively sweeping square wave voltammetric scan. The peak current is proportional to the concentration of molybdenum over the range 2x10(-9) to 5x10(-8) mol L(-1), with a 3sigma detection limit of 9x10(-10) mol L(-1) with an accumulation time of 60 s. The measurements were carried out from underaerated solutions. The proposed procedure was validated in the course of Mo(VI) determination in water certified reference materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2008.06.044DOI Listing

Publication Analysis

Top Keywords

situ plated
12
plated lead
12
lead film
12
film electrode
12
adsorptive stripping
8
stripping voltammetric
8
voltammetric determination
8
determination trace
8
trace concentrations
8
concentrations molybdenum
8

Similar Publications

Nano-Metal-Organic Frameworks Isolated in Mesoporous Structures.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.

As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.

View Article and Find Full Text PDF

Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.

View Article and Find Full Text PDF

Detecting surface contamination on thin thermoformed polymer plates is a critical issue for various industrial applications. Lamb waves offer a promising solution, though their effectiveness is challenged by the strong attenuation and anisotropy of the polymer plates. This issue is addressed in the context of a calcium carbonate (CaCO) layer deposited on a polypropylene (PP) plate.

View Article and Find Full Text PDF

Necrotic enteritis (NE), caused by the gram-positive, anaerobic bacterium, Clostridium perfringens, results in an estimated $6 billion in annual economic losses to the global poultry industry. C. perfringens is part of the normal microflora of the poultry gastrointestinal tract, but damage to the intestinal epithelium can lead to increased cell proliferation and production of toxins which gives rise to disease.

View Article and Find Full Text PDF

Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!