RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model.

Eur J Oral Sci

Department of Oral Biology, University of Illinois at Chicago, College of Dentistry, Chicago, IL 60612, USA.

Published: August 2008

The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597431PMC
http://dx.doi.org/10.1111/j.1600-0722.2008.00545.xDOI Listing

Publication Analysis

Top Keywords

bone resorption
12
alveolar bone
12
rankl osteopontin
8
mouse model
8
occlusal forces
8
inhibition alveolar
8
bone apposition
8
opn rankl
8
bone
6
rankl
4

Similar Publications

Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis.

Nutrients

January 2025

College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.

Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.

View Article and Find Full Text PDF

Background/objectives: Facial bone density, including the jawbone, declines earlier than that of the lumbar spine and calcaneus. Calcium maltobionate is reported to mitigate bone resorption and maintain bone density of the lumbar spine in post-menopausal women, but its effects on facial bone density remain understudied. Therefore, this study compared variations in facial bone mineral density with variations in calcaneal bone mineral density and bone resorption markers among healthy women, examining differences between pre- and post-menopause and the effects of continuous calcium maltobionate intake.

View Article and Find Full Text PDF

: Classical reverse shoulder arthroplasty (RSA) with a high neck-shaft angle (NSA) of 155° has shown satisfactory outcomes. However, newer RSA designs aim to improve results by modifying the stem design. This study evaluates the 5-year outcomes of a stem design featuring a rectangular metadiaphyseal fixation and a 135° NSA.

View Article and Find Full Text PDF

: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.

View Article and Find Full Text PDF

Vitamin D affects bone metabolism and calcium-phosphate metabolism. Its deficiency leads to bone mineralization disorders and is the cause of abnormal skeletal development from fetal life to the period of completed skeletal growth. In later periods of life, vitamin D deficiency leads to bone metabolism disorders, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!