Compositional differences between meteorites and near-Earth asteroids.

Nature

Research and Scientific Support Department, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands.

Published: August 2008

Understanding the nature and origin of the asteroid population in Earth's vicinity (near-Earth asteroids, and its subset of potentially hazardous asteroids) is a matter of both scientific interest and practical importance. It is generally expected that the compositions of the asteroids that are most likely to hit Earth should reflect those of the most common meteorites. Here we report that most near-Earth asteroids (including the potentially hazardous subset) have spectral properties quantitatively similar to the class of meteorites known as LL chondrites. The prominent Flora family in the inner part of the asteroid belt shares the same spectral properties, suggesting that it is a dominant source of near-Earth asteroids. The observed similarity of near-Earth asteroids to LL chondrites is, however, surprising, as this meteorite class is relatively rare ( approximately 8 per cent of all meteorite falls). One possible explanation is the role of a size-dependent process, such as the Yarkovsky effect, in transporting material from the main belt.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature07154DOI Listing

Publication Analysis

Top Keywords

near-earth asteroids
20
spectral properties
8
asteroids
7
near-earth
5
compositional differences
4
differences meteorites
4
meteorites near-earth
4
asteroids understanding
4
understanding nature
4
nature origin
4

Similar Publications

Ground-based detection of spaceborne dynamic objects, such as near-Earth asteroids and space debris, is essential for ensuring the safety of space operations. This paper presents YOLO-Dynamic, a novel detection algorithm aimed at addressing the limitations of existing models, particularly in complex environments and small-object detection. The proposed algorithm introduces two newly designed modules: the SC_Block_C2f and the LASF_Neck.

View Article and Find Full Text PDF

Asteroid discoveries are essential for planetary-defense efforts aiming to prevent impacts with Earth, including the more frequent megaton explosions from decameter impactors. While large asteroids (≥100 km) have remained in the main belt since their formation, small asteroids are commonly transported to the near-Earth object (NEO) population. However, due to the lack of direct observational constraints, their size-frequency distribution -which informs our understanding of the NEOs and the delivery of meteorite samples to Earth-varies significantly among models.

View Article and Find Full Text PDF

Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing.

View Article and Find Full Text PDF
Article Synopsis
  • * The likely cause of this meteorite influx is the breakup of a large asteroid in the main asteroid belt, which continues to produce over 20% of current meteorite falls.
  • * Evidence suggests that the Massalia collisional family of asteroids in the inner belt is the most probable source of this event, aligning with the distribution of L chondrite-like materials found on Earth today.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!