We describe the eighth case study of a female diagnosed with anti-N-methyl-D-aspartate receptor encephalitis without an identified tumor who presented with floridly psychotic symptoms following a 2-week prodromal phase with new-onset headaches and presyncopal episodes. While hospitalized, the patient had seizures, autonomic dysfunction, involuntary movements, and a decline in mental status. A subsequent assay was positive for anti-N-methyl-D-aspartate receptor receptor antibodies. In contrast to most reported cases, an initial trial with corticosteroids was therapeutically unsuccessful. Subsequent treatment with intravenous immunoglobulins, however, resulted in a prompt, robust clinical response and enabled the patient to be rapidly discharged from the hospital, with minimal neuropsychiatric sequelae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/s109285290001378x | DOI Listing |
Sci Immunol
January 2025
IDIBAPS Biomedical Research Institute, Barcelona, Spain.
Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Background: Metabolomics offers promise in uncovering potential biomarkers and understanding the pathophysiology of autoimmune encephalitis (AE), which is a cluster of disorders with the host immune system targeting self-antigens expressed in the central nervous system (CNS). In this research, our objective was to explore metabolic characterization in cerebrospinal fluid (CSF) from individuals with AE, aiming to shed light on the pathophysiology of AE.
Methods: A targeted approach was applied using an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system to study CSF metabolites in patients with AE (n = 18), and control subjects without neurological diseases (n = 17).
Neuropsychiatr Dis Treat
December 2024
Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510180, People's Republic of China.
Background: Mitochondrial damage is significant in autoimmune diseases, with mitochondrial N-formyl methionine peptide (fMet) being released from damaged mitochondria. However, its potential as a marker for assessing the severity of two kinds of encephalitis - anti-N-methyl-D-aspartate receptor (anti-NMDAR) and anti-leucine-rich glioma-inactivated 1 (LGI1) - remains uncertain. We measured CSF fMet levels in anti-NMDAR encephalitis and anti-LG1 encephalitis patients, assessing its diagnostic and therapeutic potential.
View Article and Find Full Text PDFIn Vivo
December 2024
Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.;
Background/aim: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, though rare, is the most common form of autoimmune encephalitis, predominantly affecting young individuals, particularly females. Standard treatments include corticosteroids, intravenous immunoglobulins (IVIG), and plasmapheresis, with rituximab recommended for those unresponsive to first-line therapies. However, reliable biomarkers for clinical assessment remain elusive.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Neurology, University Hospital Ulm, Ulm, Germany.
Introduction: Very rarely, adult NMDAR antibody-associated encephalitis (NMDAR-E) leads to persistent cerebellar atrophy and ataxia. Transient cerebellar ataxia is common in pediatric NMDAR-E. Immune-mediated cerebellar ataxia may be associated with myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP-4), kelch-like family member 11 (KLHL11), and glutamate kainate receptor subunit 2 (GluK2) antibodies, all of which may co-occur in NMDAR-E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!