AI Article Synopsis

  • This study aimed to explore the differences in serotonin transport systems between normal and parkinsonian monkeys using a specific radioligand called [(123)I]ADAM.
  • The research involved performing brain scans (SPECT) on two normal monkeys and one parkinsonian monkey, who had PD induced through a specific chemical method.
  • Findings showed that the parkinsonian monkey had significantly lower serotonin transporter uptake in various brain regions compared to normal monkeys, suggesting the potential of using [(123)I]ADAM SPECT for assessing serotonin transporter changes in human Parkinson's disease.

Article Abstract

Parkinson's disease (PD) affects multiple neurotransmitter systems. The purpose of this study was to investigate differences in the serotonin transport system between normal and parkinsonian monkeys using 2-([2-([di-methylamino]methyl)phenyl]thio)-5-[(123)I] iodophenyl-amine([(123)I]ADAM), a serotonin transporters (SERT) radioligand. The brain single photon emission computed tomography (SPECT) was performed on two normal and one parkinsonian monkey. The parkinsonian monkey was induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle under magnetic resonance imaging (MRI) guidance. Each monkey underwent two [(99m)Tc] TRODAT-1 (a dopamine transporters imaging agent) and two [(123)I] ADAM brain SPECT scans. After a bolus injection of the radioligand, the SPECT data were acquired over 4h using a dual-head gamma camera equipped with ultra-high resolution fan-beam collimators. The striatal uptake of [(99m)Tc]TRODAT-1 was 46% lower in the parkinsonian monkey than those of normal monkeys at 210-240 min post-injection. [(123)I]ADAM uptake in the midbrain of the parkinsonian monkey was comparable to those of the controls. The uptakes of [(123)I]ADAM in the striatum, thalamus, and frontal cortex of the parkinsonian monkey, were 31%, 31%, and 23% lower than those of normal monkeys at 210-240 min post-injection, respectively. Our results suggest that [(123)I]ADAM SPECT has potential for evaluating the serotonin transporter changes in human PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2008.06.033DOI Listing

Publication Analysis

Top Keywords

parkinsonian monkey
20
serotonin transporters
8
[123i]adam spect
8
normal parkinsonian
8
normal monkeys
8
monkeys 210-240
8
210-240 min
8
min post-injection
8
post-injection [123i]adam
8
parkinsonian
7

Similar Publications

Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.

View Article and Find Full Text PDF

Background: Patients with Parkinson's disease (PD) and atypical parkinsonian syndromes are at increased risk of falls and should be actively screened and treated for osteoporosis. In 2024, the Royal Australian College of General Practitioners (RACGP) revised their practice guidelines for diagnosing and managing osteoporosis in postmenopausal women and men aged over 50 years.

Objective: We conducted the first Australian study to audit these guidelines in patients with PD and atypical parkinsonian syndromes.

View Article and Find Full Text PDF

Ocular microtremor (OMT) is a fixational eye movement that cannot be seen with the naked eye but is always present, even when the eye appears motionless/still. The link between OMT and brain function provides a strong rationale for investigation as there lies potential for its use as a biomarker in populations with neurological impairments. OMT frequency is typically 70-80Hz in healthy adults and research suggests that this will be reduced in those with neurological disease such as Parkinson's Disease (PD).

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by slow movement, and while there is no cure, early detection can improve outcomes.
  • Vision-based methods for PD detection focus on analyzing gait, utilizing both appearance-based and model-based approaches.
  • A new method that combines these two approaches has shown promising results, achieving an AUC of 0.87 and F1-Scores of 0.82 in distinguishing between normal and Parkinsonian gait.
View Article and Find Full Text PDF

Biomarkers that aid in early detection of neurodegeneration are needed to enable early symptomatic treatment and enable identification of people who may benefit from neuroprotective interventions. Increasing evidence suggests that sleep biomarkers may be useful, given the bi-directional relationship between sleep and neurodegeneration and the prominence of sleep disturbances and altered sleep architectural characteristics in several neurodegenerative disorders. This study aimed to demonstrate that sleep can accurately characterize specific neurodegenerative disorders (NDD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!