Three novel glutathione S-transferase (GSTs) cDNAs were cloned from a disk abalone (Haliotis dicus discus) cDNA library. Multiple alignment and phylogenetic analysis of three GSTs revealed that their closest relationship is with insect sigma GSTs. Recombinant GSTs were over-expressed in Escherichia coli as soluble fusion proteins. HdGSTS1 and HdGSTS2 were active towards 1-chloro-2,4-dinitrobenzene and ethacrynic acid, whereas HdGSTS3 appeared to be a non-enzymatic GST. Two active GSTs had similar optimum conditions for enzymatic reaction at pH 8.0 and temperature of approximately 30 degrees C. Molecular modeling analysis of three GSTs implicates their diverse active sites as being responsible for their different enzymatic features. Three sigma GSTs had significantly different expression patterns and levels of expression in abalone tissues, indicating their different functions. After 48 h-exposure to three model marine pollutants, only HdGSTS1 exhibited a proper inducibility, exhibiting its good biomarker potential for organic contaminants in marine environment. In contrast, the other two sigma GSTs revealed a minor role in the response of pollutants exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2008.07.012 | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
January 2025
College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:
Glutathione S-transferase (GST) plays a critical role in detoxifying various chemical compounds and is essential for host adaptation and pesticide resistance in insects. To understand the genetic structure of the GST family and the expression patterns among three haplotypes of Aphis gossypii, we conducted studies using genome annotation files and RNA-seq data. We identified 11 GSTs in A.
View Article and Find Full Text PDFPest Manag Sci
November 2024
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: Glutathione S-transferase (GST) is a key phase II detoxification enzyme involved in xenobiotics metabolism, and plays a pivotal role in the evolution of resistance to various types of insecticides. However, the specific functions of GST genes in clothianidin resistance remain obscure in Bradysia odoriphaga.
Results: Here, a specific GST inhibitor, diethyl maleate (DEM), significantly increased the mortality of Bradysia odoriphaga larvae following exposure to clothianidin, and the activity of GST enzyme in clothianidin-resistant (CL-R) strain of Bradysia odoriphaga was markedly greater than that in the SS strain.
Microbes Infect
July 2024
Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay; Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Departamento de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Montevideo, Uruguay. Electronic address:
Cystic echinococcosis, a zoonosis caused by cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) genetic complex, affects humans and diverse livestock species.
View Article and Find Full Text PDFTrop Med Infect Dis
April 2024
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City C.P. 04510, Mexico.
Glutathione transferases (GSTs EC 2.5.1.
View Article and Find Full Text PDFParasitology
March 2024
Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
The most common equine tapeworm, , has often been neglected amongst molecular investigations and has been faced with limited treatment options. However, the recent release of a transcriptome dataset has now provided opportunities for in-depth analysis of protein expression. Here, global, and sub-proteomic approaches were utilized to provide a comprehensive characterization of the soluble glutathione transferases (GST) (ApGST).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!