Role of the prostanoid FP receptor in action potential generation and phenotypic transformation of NRK fibroblasts.

Cell Signal

Department of Cell Biology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

Published: November 2008

By using an shRNA approach to knockdown the expression of the prostaglandin (PG)-F(2alpha) receptor (FP-R), the role of PGF(2alpha) in the process of phenotypic transformation of normal rat kidney (NRK) fibroblasts has been studied. Our data show that PGF(2alpha) up-regulates Cox-2 expression both at the mRNA and protein level, indicating that activation of FP-R in NRK fibroblasts induces a positive feedback loop in the production PGF(2alpha). Knockdown of FP-R expression fully impaired the ability of PGF(2alpha) to induce a calcium response and subsequent depolarization in NRK cells. However, these cells could still undergo phenotypic transformation when treated with a combination of EGF and retinoic acid, but in contrast to the wild-type cells, this process was not accompanied by a membrane depolarization to -20 mV. Knockdown of FP-R expression also impaired the spontaneous firing of calcium action potentials by density-arrested NRK cells. These data show that a membrane depolarization is not a prerequisite for the acquisition of a transformed phenotype. Furthermore, our data provide the first direct evidence that activity of PGF(2alpha) by putative pacemaker cells underlies the generation of calcium action potentials in NRK monolayers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2008.07.013DOI Listing

Publication Analysis

Top Keywords

phenotypic transformation
12
nrk fibroblasts
12
knockdown fp-r
8
fp-r expression
8
nrk cells
8
membrane depolarization
8
calcium action
8
action potentials
8
nrk
6
pgf2alpha
5

Similar Publications

Insights and Opportunities from Multimarker Evaluation of Heart Failure: Lessons from BIOSTAT-HF.

Curr Heart Fail Rep

January 2025

Division of Cardiovascular Medicine, Department of Medicine, University of California, 9394 Medical Center Drive, La Jolla, San Diego, CA, USA.

Purpose Of Review: Heart failure is a complex and heterogenous disease state that affects millions worldwide. Over recent decades, advancements in medical therapy and device implementation have significantly transformed the landscape of heart failure outcomes, while improvements in imaging modalities and greater accessibility to genome sequencing have led to increasing recognition of distinct heart failure endotypes. There is rising evidence to suggest all patients do not benefit equally from intensification of guideline directed medical therapy (GDMT).

View Article and Find Full Text PDF

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.

View Article and Find Full Text PDF

Aim: To evaluate the effects of exergaming on physical frailty in older adults.

Design: Systematic review with meta-analysis.

Methods: Six electronic databases were searched for randomised controlled trials evaluating the effects of exergaming on frailty in older adults.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!