The self-assembly of soluble proteins and peptides into beta-sheet-rich oligomeric structures and insoluble fibrils is a hallmark of a large number of human diseases known as amyloid diseases. Drugs that are able to interfere with these processes may be able to prevent and/or cure these diseases. Experimental difficulties in the characterization of the intermediates involved in the amyloid formation process have seriously hampered the application of rational drug design approaches to the inhibition of amyloid formation and growth. Recently, short model peptide systems have proved useful in understanding the relationship between amino acid sequence and amyloid formation using both experimental and theoretical approaches. Moreover, short D-peptide sequences have been shown to specifically interfere with those short amyloid stretches in proteins, blocking oligomer formation or disassembling mature fibrils. With the aim of rationalizing which interactions drive the binding of inhibitors to nascent beta-sheet oligomers, in this study, we have carried out extensive molecular dynamics simulations of the interaction of selected d-peptide sequences with oligomers of the target model sequence STVIIE. Structural analysis of the simulations helped to identify the molecular determinants of an inhibitory core whose conformational and physicochemical properties are actually shared by nonpeptidic small-molecule inhibitors of amyloidogenesis. Selection of one of these small molecules and experimental validation against our model system proved that it was indeed an effective inhibitor of fibril formation by the STVIIE sequence, supporting theoretical predictions. We propose that the inhibitory determinants derived from this work be used as structural templates in the development of pharmacophore models for the identification of novel nonpeptidic inhibitors of aggregation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2008.07.076DOI Listing

Publication Analysis

Top Keywords

amyloid formation
12
molecular dynamics
8
d-peptide sequences
8
amyloid
6
formation
5
dynamics study
4
study interaction
4
interaction d-peptide
4
d-peptide amyloid
4
inhibitors
4

Similar Publications

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: The growing number of AD patients is a public concern all over the world. During the decade, anti-amyloid beta-proteins (Aβ) monoclonal antibodies for AD patients have been developed. Among the immunotherapeutic agents, lecanemab is an anti-Aβ monoclonal antibody that binds to Aβ protofibrils (Aβ PFs), which is an intermediate molecule in Aβ species.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) frequently coexists with cerebral small vessel disease (CSVD) is common in the aging population, yet the underlying mechanisms are not yet fully understood. Both long-term blood pressure variability (BPV) and plasma neurofilament light (PNFL) were identified as potential biomarkers for AD and CSVD. This study aims to understand the mechanisms of comorbidity between AD and CSVD by investigating the associations among BPV, PNFL, and comorbidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!