This study was conducted to elucidate microbiological characteristics of river water and groundwater communities in order to improve our conceptual and predictive understanding of river and groundwater ecosystem processes, functioning and management. Rouge River bacterial communities from shallow groundwater and river water were screened using Biolog Ecoplates, which test for oxidation of selected carbon sources and by culturing heterotrophic bacteria. The isolates cultured from the samples were also characterized using the 16SrRNA gene-based approach. The patterns of utilization of the groups of carbon substrates by the microbial communities revealed differences between river water and groundwater samples. Carbohydrates, polymers, carboxylic acids and amino acids were highly utilized by the microbial communities in the river samples, while carbohydrates, polymers, amino acids and phenolic compounds were metabolized in the groundwater samples. Sequence comparison results showed that the most prevalent phylum in all sites was the Firmicutes (low G+C, mostly gram-positive bacteria). The dominant isolates from this phylum were similar to Bacillus spp., (98% nucleotide identity), which represented approximately 62% of the total number of unique isolates. Also prevalent were the gamma-Proteobacteria, which were dominated by 16S rRNA sequences 98-99% similar to that of Pseudomonas spp. The observed profile of carbon sources metabolized reflected the catabolic potential of the river water and groundwater community. Many of the isolates recovered have been known to metabolize several organic substrates, and may have potential use in remediation organic contaminants from the Rouge River. Direct incubation water samples in Biolog Ecoplates produced patterns of metabolic response useful in the classification and characterization of river water and groundwater microbial communities. Heterotrophic bacteria isolated from the sites may play important roles in the fate of many organic and inorganic contaminants from the Rouge River, although future studies are needed to understand their response to these contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330801986998 | DOI Listing |
Heliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFNiger Med J
January 2025
Department of Medical Laboratory Services, Federal Medical Center, Yenagoa, Bayelsa State, Nigeria.
Cholera remains a significant public health challenge in Nigeria, with recurrent outbreaks exacerbated by inadequate water, sanitation, and hygiene (WASH) infrastructure, as well as conflict and displacement. This review examines cholera outbreaks in Nigeria from 2010 to 2024, analyzing epidemiological trends, contributing factors, and public health responses. Seasonal peaks during periods of heavy rainfall and flooding have consistently facilitated transmission, with Northern regions disproportionately affected due to poor infrastructure and ongoing conflicts.
View Article and Find Full Text PDFiScience
January 2025
Technology R&D Center, Huaneng Lancang River Hydropower Inc., Kunming 650000, China.
The construction of dams to intercept natural rivers constitutes the most severe human activity influencing the underlying surface. This study focuses on four cascade reservoirs of the Lancang River and explores their impact on the migration of organic matter in sediments. The research reveals significant spatial variations in total organic carbon (TOC) and total nitrogen concentrations in the sediments of the four reservoirs.
View Article and Find Full Text PDFiScience
January 2025
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
Surface water in rivers is vital for human society. However, our current understanding of the dynamics and drivers of river flows relies predominantly on stream gauging data, which are limited in spatial coverage and involve significant costs. Remote sensing techniques have emerged as complementary tools for monitoring river discharge, but these satellite-based methods often require complex data processing.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!