The objectives of the paper are to verify the potentialities of a sequential two phase partitioning bioreactor in degrading xenobiotics and to evaluate the kinetic parameters for modelling the system. The target compound investigated was the 4-nitrophenol. Preliminary tests were carried out to define the solvent most appropriate for the compound. Among the three investigated solvents 1-undecanol, 2-undecanon and oleyl alcohol, the 2-undecanon was chosen because of the higher partition coefficient of 30 and the negligible formation of emulsions. Moreover, the tested solvent showed satisfactory "biocompatibility" characteristics for the biomass with minor effects on the intrinsic kinetics. Parallel batch kinetic tests were then performed with the conventional one phase and the two phase systems. In the two phase system the biomass is exposed for all the time to 4NP concentrations that are significantly lower if compared to the conventional system and, for the highest concentration (450 mg/l) in the two phase system a reduction of the reaction time is observed depending on the biomass concentration. Kinetic parameters were also evaluated in both cases by fitting of the experimental data with a modified form of the Haldane equation.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2008.386DOI Listing

Publication Analysis

Top Keywords

kinetic parameters
8
phase system
8
phase
6
removal xenobiotics
4
xenobiotics phase
4
phase sequencing
4
sequencing batch
4
batch reactor
4
reactor kinetics
4
kinetics modelling
4

Similar Publications

The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).

View Article and Find Full Text PDF

Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces.

Chem Rev

January 2025

Department of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States.

The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena.

View Article and Find Full Text PDF

The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.

View Article and Find Full Text PDF

Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!