Poly(C)-binding proteins (PCBPs) are important regulatory proteins that contain three KH (hnRNP K homology) domains. Binding poly(C) D/RNA sequences via KH domains is essential for multiple PCBP functions. To reveal the basis for PCBP-D/RNA interactions and function, we determined the structure of a construct containing the first two domains (KH1-KH2) of human PCBP2 by NMR. KH1 and KH2 form an intramolecular pseudodimer. The large hydrophobic dimerization surface of each KH domain is on the side opposite the D/RNA binding interface. Chemical shift mapping indicates both domains bind poly(C) DNA motifs without disrupting the KH1-KH2 interaction. Spectral comparison of KH1-KH2, KH3, and full-length PCBP2 constructs suggests that the KH1-KH2 pseudodimer forms, but KH3 does not interact with other parts of the protein. From NMR studies and modeling, we propose possible modes of cooperative binding tandem poly(C) motifs by the KH domains. D/RNA binding may induce pseudodimer dissociation or stabilize dissociated KH1 and KH2, making protein interaction surfaces available to PCBP-binding partners. This conformational change may represent a regulatory mechanism linking D/RNA binding to PCBP functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568903 | PMC |
http://dx.doi.org/10.1074/jbc.M803046200 | DOI Listing |
RNA
March 2023
Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
Z-RNA is a higher-energy, left-handed conformation of RNA, whose function has remained elusive. A growing body of work alludes to regulatory roles for Z-RNA in the immune response. Here, we review how Z-RNA features present in cellular RNAs-especially containing retroelements-could be recognized by a family of winged helix proteins, with an impact on host defense.
View Article and Find Full Text PDFChembiochem
December 2022
Department of Chemistry, Texas A&M University, College Station, 77843 TX, USA.
Aptamers composed of mirror-image L-(deoxy)ribose nucleic acids, referred to as L-aptamers, are a promising class of RNA-binding reagents. Yet, the selectivity of cross-chiral interactions between L-aptamers and their RNA targets remain poorly characterized, limiting the potential utility of this approach for applications in biological systems. Herein, we carried out the first comprehensive analysis of cross-chiral L-aptamer selectivity using a newly developed "inverse" in vitro selection approach that exploits the genetic nature of the D-RNA ligand.
View Article and Find Full Text PDFNat Protoc
June 2022
Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
RNA G-quadruplex (rG4)-SELEX is a method that generates L-RNA aptamers to target an rG4 structure of interest, which can be applied to inhibit G-quadruplex-mediated interactions that have important roles in gene regulation and function. Here we present a Protocol Extension substantially modifying an existing SELEX protocol to describe in detail the procedures involved in performing rG4-SELEX to identify rG4-specific binders that can effectively suppress rG4-peptide and rG4-protein associations. This Protocol Extension improves the speed of aptamer discovery and identification, offering a suite of techniques to characterize the aptamer secondary structure and monitor binding affinity and specificity, and demonstrating the utility of the L-RNA aptamer.
View Article and Find Full Text PDFMol Biol Rep
July 2021
Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India.
Background: Zinc finger proteins encompass one of the unique and large families of proteins with diversified biological functions in the human body. These proteins are primarily considered to be DNA binding transcription factors; however, owing to the diverse array of zinc-finger domains, they are able to interact with molecules other than DNA like RNA, proteins, lipids and PAR (poly-ADP-ribose). Evidences from recent scientific studies have provided an insight into the potential functions of zinc finger proteins in immune system regulation both at the transcriptional and post transcriptional level.
View Article and Find Full Text PDFAnnu Rev Virol
September 2021
Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA; email:
C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!