Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome (RTT), West syndrome, and X-linked infantile spasms, sharing the common feature of mental retardation and early seizures. CDKL5 is a rather uncharacterized kinase, but its involvement in RTT seems to be explained by the fact that it works upstream of MeCP2, the main cause of Rett syndrome. To understand the role of this kinase for nervous system functions and to address if molecular mechanisms are involved in regulating its distribution and activity, we studied the ontogeny of CDKL5 expression in developing mouse brains by immunostaining and Western blotting. The expression profile of CDKL5 was compared with that of MeCP2. The two proteins share a general expression profile in the adult mouse brain, but CDKL5 levels appear to be highly modulated at the regional level. Its expression is strongly induced in early postnatal stages, and in the adult brain CDKL5 is present in mature neurons, but not in astroglia. Interestingly, the presence of CDKL5 in the cell nucleus varies at the regional level of the adult brain and is developmentally regulated. CDKL5 shuttles between the cytoplasm and the nucleus and the C-terminal tail is involved in localizing the protein to the cytoplasm in a mechanism depending on active nuclear export. Accordingly, Rett derivatives containing disease-causing truncations of the C terminus are constitutively nuclear, suggesting that they might act as gain of function mutations in this cellular compartment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662074PMC
http://dx.doi.org/10.1074/jbc.M804613200DOI Listing

Publication Analysis

Top Keywords

cdkl5
9
cdkl5 expression
8
c-terminal tail
8
rett syndrome
8
expression profile
8
brain cdkl5
8
regional level
8
adult brain
8
expression modulated
4
modulated neuronal
4

Similar Publications

Background: Preclinical studies and anecdotal case reports support the potential therapeutic benefit of low-dose oral ketamine as a treatment of clinical symptoms in Rett syndrome (RTT); however, no controlled studies have been conducted in RTT to evaluate safety, tolerability and efficacy.

Design: This was a sequentially initiated, dose-escalating cohort, placebo-controlled, double blind, randomized sequence, cross-over study of oral ketamine in 6-12-year-old girls with RTT to evaluate short-term safety and tolerability and explore efficacy.

Methods: Participants were randomized to either five days treatment with oral ketamine or matched placebo, followed by a nine-day wash-out period and then crossed-over to the opposite treatment.

View Article and Find Full Text PDF

Independent genetic strategies define the scope and limits of CDKL5 deficiency disorder reversal.

Cell Rep Med

January 2025

Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19102, USA. Electronic address:

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. The early onset of CDD suggests that CDKL5 is essential during development, but post-developmental re-expression rescues multiple CDD-related phenotypes in hemizygous male mice. Since most patients are heterozygous females, studies in clinically relevant female models are essential.

View Article and Find Full Text PDF

Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside.

Subcell Biochem

January 2025

Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The brain plays a vital role in maintaining homeostasis and effective interaction with the environment, shaped by genetic and environmental factors throughout neurodevelopment and maturity. While genetic components dictate initial neurodevelopment stages, epigenetics-specifically neuroepigenetics-modulates gene expression in response to environmental influences, allowing for brain adaptability and plasticity. This interplay is particularly evident in neuropathologies like Rett syndrome and CDKL5 deficiency syndrome, where disruptions in neuroepigenetic processes underline significant cognitive and motor impairments.

View Article and Find Full Text PDF

Recent advances in recombinant production of soluble proteins in E. coli.

Microb Cell Fact

January 2025

Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica, 5000, Slovenia.

Background: E. coli still remains the most commonly used organism to produce recombinant proteins in research labs. This condition is mirrored by the attention that researchers dedicate to understanding the biology behind protein expression, which is then exploited to improve the effectiveness of the technology.

View Article and Find Full Text PDF

Ganaxolone: A Review in Epileptic Seizures Associated with Cyclin-Dependent Kinase-Like 5 Deficiency Disorder.

Paediatr Drugs

January 2025

Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.

Oral ganaxolone (ZTALMY), a synthetic analogue of the endogenous neuroactive steroid allopregnanolone, acts as a positive allosteric modulator of synaptic and extra-synaptic γ-aminobutyric acid (GABA) type A receptor function in the CNS. In the EU and the UK, it is approved for the adjunctive treatment of epileptic seizures associated with cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) in patients aged 2-17 years. In a multinational phase III study (Marigold), 17 weeks' therapy with adjunctive ganaxolone, administered orally three times daily with food, significantly reduced 28-day major motor seizure frequency from baseline versus placebo in patients aged 2-19 years with CDD-associated refractory epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!