SIRT2 inhibitors with a N-(3-phenylpropenoyl)-glycine tryptamide backbone were studied. This backbone has been developed in our group, and it is derived from a compound originally found by virtual screening. In addition, compounds with a smaller 3-phenylpropenoic acid tryptamide backbone were also included in the study. Binding modes for the new compounds and the previously reported compounds were analyzed with molecular modelling methods. The approach, which included a combination of molecular dynamics, molecular docking and cluster analysis, showed that certain docking poses were favourable despite the conformational variation in the target protein. The N-(3-phenylpropenoyl)-glycine tryptamide backbone is also a good backbone for SIRT2 inhibitors, and the series of compounds includes several potent SIRT2 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.07.059DOI Listing

Publication Analysis

Top Keywords

sirt2 inhibitors
16
tryptamide backbone
16
n-3-phenylpropenoyl-glycine tryptamide
12
inhibitors n-3-phenylpropenoyl-glycine
8
backbone sirt2
8
backbone
6
characterization binding
4
binding properties
4
sirt2
4
properties sirt2
4

Similar Publications

Sirtuin 2 exacerbates renal tubule injury and inflammation in diabetic mice via deacetylation of c-Jun/c-Fos.

Cell Mol Life Sci

January 2025

Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.

Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients.

View Article and Find Full Text PDF

Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.

Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.

Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.

View Article and Find Full Text PDF

Our preliminary data using bone marrow-derived macrophages (BMDMs) collected from ICR mice treated with anti-sirtuin (anti-SIRT) 1 antibody showed that uptake was significantly attenuated. We then further investigated the effect of an inhibitor of SIRT1/2, cambinol, in the progression of . The in vitro results using RAW264.

View Article and Find Full Text PDF

Doxorubicin (DOXO) is a widely used anti-cancer agent, yet the precise mechanism underlying the induction of tumor cell death remains unclear. This study aimed to elucidate new mechanisms by which doxorubicin induces apoptosis in the EMT6 mouse breast carcinoma cell line. The role of doxorubicin was assessed using the XTT assay.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!