Programmed cell death, with many of the morphological markers of apoptosis, is increasingly recognized as an important process in plant disease. We have investigated the involvement and potential role of apoptosis during the formation of leaf lesions by the fungus Leptosphaeria maculans on susceptible Brassica napus cv. Westar. There were no signs of host cell damage until 7 to 8 days postinoculation (dpi), when trypan-blue-stained leaf mesophyll cells were first detected. Hyphae were visible in the intercellular spaces of the inoculated area from 5 dpi and were associated with trypan-blue-stained cells at 8 to 9 dpi. Hallmarks of apoptosis, observed coincident with or immediately prior to the formation of leaf lesions at 8 to 10 dpi, included membrane shrinkage of the mesophyll cell cytoplasm, loss of cell to cell contact in mesophyll cells, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of nuclei in apparently "healthy" tissue immediately adjacent to dead areas. Hyphae were highly branched and prolific in the "healthy" tissue immediately adjacent to dead areas 9 to 10 dpi, and formed pycnidia inside dead areas 11 to 12 dpi. Coinfiltration of the tetrapeptide caspase inhibitor Ac-DEVD-CHO with spores of the pathogen significantly suppressed development of leaf lesions but did not affect fungus viability. We hypothesize that L. maculans elicits apoptosis as a dependent component of pathogenesis in susceptible B. napus, and that the fungus uses apoptotic cells as a source of nutrition for reproduction and further growth.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-21-9-1143DOI Listing

Publication Analysis

Top Keywords

leaf lesions
12
dead areas
12
leptosphaeria maculans
8
maculans elicits
8
elicits apoptosis
8
brassica napus
8
formation leaf
8
mesophyll cells
8
"healthy" tissue
8
tissue adjacent
8

Similar Publications

First report of subsp. infecting southern shagbark hickory () in Georgia, USA.

Plant Dis

January 2025

USDA Agricultural Research Service, 9611 S. Riverbend Ave, Parlier, District of Columbia, United States, 93648;

Southern shagbark hickory (Carya carolinae-septentrionalis) is one of several deciduous trees in the family Juglandaceae and genus Carya that are native to North America. Southern shagbark hickory has a restricted distribution to the Southeast U.S.

View Article and Find Full Text PDF

Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).

View Article and Find Full Text PDF

Tobacco ( L.) is an economically important crop in China. In April 2024, field tobacco (cv.

View Article and Find Full Text PDF

, commonly known as stock, is a flowering plant species in the Brassicaceae popularly used as a cut flower due to its fragrant, long-lasting blooms. In September 2023, stock 'Iron White' plants displaying symptoms and signs of downy mildew were observed within a high tunnel in a cut flower farm in Franklin Co., OH.

View Article and Find Full Text PDF

Botryosphaeria stem blight is a fungal disease of blueberry caused by members of the Botryosphaeriaceae family, which can lead to rapid wilting of leaves and stems, often resulting in significant yield loss and even plant death. Botryosphaeria stem blight is a major disease in Alabama, however, information on the distribution and causal pathogens for stem blight in Alabama is limited. This study surveyed blueberry farms in Alabama and nearby parts of Georgia and Mississippi to reveal the occurrence, species identities, and virulence of causal pathogens for Botryosphaeria stem blight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!