With human neuropeptide Y Y2 receptor expressed in the Chinese hamster ovary (CHO) cells, the Asp35Ala mutation, and especially the change of Pro34Asp35 to Ala34Ala35, decrease the compartmentalization and strongly accelerate internalization of the receptor. These changes are not associated with alterations in agonist affinity, G-protein interaction, dimerization, or level of expression of the mutated receptors relative to the wildtype receptor. The proline-flanked aspartate in the N-terminal extracellular segment of the neuropeptide Y Y2 receptor thus apparently has a large role in anchoring and compartmentalization of the receptor. However, the Pro34Ala mutation does not significantly affect the embedding and cycling of the receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579264PMC
http://dx.doi.org/10.1016/j.ejphar.2008.07.038DOI Listing

Publication Analysis

Top Keywords

neuropeptide receptor
12
receptor
7
n-terminal aspartate
4
aspartate internalization
4
internalization neuropeptide
4
receptor human
4
human neuropeptide
4
receptor expressed
4
expressed chinese
4
chinese hamster
4

Similar Publications

The Role and Mechanisms of the Hypocretin System in Zebrafish ().

Int J Mol Sci

December 2024

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.

Sleep is the most important physiological function of all animals studied to date. Sleep disorders include narcolepsy, which is characterized by excessive daytime sleepiness, disruption of night sleep, and muscle weakness-cataplexy. Narcolepsy is known to be caused by the degeneration of orexin-synthesizing neurons (hypocretin (HCRT) neurons or orexin neurons) in the hypothalamus.

View Article and Find Full Text PDF

Localization of Melanocortin 1 Receptor in the Substantia Nigra.

Int J Mol Sci

December 2024

Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan.

Recent findings have revealed that melanocortin 1 receptor (MC1R) deficiency leads to Parkinson's disease-like dopaminergic neurodegeneration in the substantia nigra (SN). However, its precise distribution and expressing-cell type in the SN remain unclear. Therefore, in this study, we analyzed the localization and characteristics of MC1R in the SN using histological methods, including in situ hybridization and immunohistochemistry.

View Article and Find Full Text PDF

Targeting CD200 in Breast Cancer: Opportunities and Challenges in Immunotherapeutic Strategies.

Int J Mol Sci

December 2024

Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

One of the key factors that contribute to tumor progression and resistance is the immunosuppressive microenvironment of the tumor. CD200 is a recently identified cell surface glycoprotein recognized as an important molecule in breast cancer for its versatile modulation of the immune response via its receptor, CD200R. The interaction between CD200 and CD200R suppresses the immune activities against tumor cells and allows them to be undetected and, in doing so, to escape from the destructive capability of the immune cells.

View Article and Find Full Text PDF

Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!