Simple helium cryostat for Raman spectroscopy.

Rev Sci Instrum

Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588.

Published: May 1979

We describe a simple and inexpensive flowing gas helium cryostat which efficiently cools the surface of a sample and eliminates the need for good thermal contact between the sample and a substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1135870DOI Listing

Publication Analysis

Top Keywords

helium cryostat
8
simple helium
4
cryostat raman
4
raman spectroscopy
4
spectroscopy describe
4
describe simple
4
simple inexpensive
4
inexpensive flowing
4
flowing gas
4
gas helium
4

Similar Publications

Characterisation at Cryogenic Temperatures of an Attenuator for an Application of Astrophysical Instrumentation with MKIDs.

Sensors (Basel)

December 2024

Laboratorio de Circuitos Integrados (LABIC), Departamento de Electrónica, Área de Instrumentación, Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain.

The use of non-cryogenic certified commercial electronics for cryogenic applications may be attractive due to their cost and availability, but it also carries risks related to reliability, performance and thermal compatibility. The decision to use commercial components that are not certified for cryogenics instead of components specifically designed for such applications must be carefully weighed based on specific project needs and risk tolerances. This work presents the characterisation of an attenuator circuit at cryogenic temperatures used in a microwave kinetic inductance detector (MKID) readout system.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for 3D mapping temperatures in cryogenic environments using a Raman-based distributed temperature sensor with telecom fibers and superconducting nanowire single photon detectors (SNSPDs).
  • The device achieves a temperature sensing capability down to (48 ± 2) K by coiling a test fiber around stages of a liquid helium-cooled cryostat, leveraging the low dark count rates of SNSPDs.
  • The technique is used to monitor temperature gradients in a hollow aluminum sample during nitrogen cooling, demonstrating potential applications in superconducting, quantum computing, and aerospace instrumentation with a spatial resolution of centimeters.
View Article and Find Full Text PDF

A hermetic on-cryostat helium source for low temperature experiments.

Rev Sci Instrum

April 2024

EeroQ Corporation, Chicago, Illinois 60651, USA.

We describe a helium source cell for use in cryogenic experiments that is hermetically sealed in situ on the cold plate of a cryostat. The source cell is filled with helium gas at room temperature and, subsequently, sealed using a cold weld crimping tool before the cryostat is closed and cooled down. At low temperatures, the helium condenses and collects in a connected experimental volume, as monitored via the frequency response of a planar superconducting resonator device sensitive to small amounts of liquid helium.

View Article and Find Full Text PDF

Electric charging effects on insulating surfaces in cryogenic liquids.

Rev Sci Instrum

April 2024

Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA.

This paper presents a new technique to study the adsorption and desorption of ions and electrons on insulating surfaces in the presence of strong electric fields in cryoliquids. The experimental design consists of a compact cryostat coupled with a sensitive electro-optical Kerr device to monitor the stability of the electric fields. The behavior of nitrogen and helium ions on a poly(methyl methacrylate) (PMMA) surface was compared to a PMMA surface coated with a mixture of deuterated polystyrene and deuterated polybutadiene.

View Article and Find Full Text PDF

Background: In the Unity MR linac (Elekta AB, Stockholm, Sweden), the radiation beam traverses the cryostat and the coil support structure. The resulting beam attenuation must be considered for output calibration and its variation with gantry angle must be characterized in the treatment planning system (TPS).

Purpose: The aim of this work was to investigate the impact of a change of the cryostat transmission characterization (CTC) curve, due to the helium level modification, on clinical treatment plan dosimetry and to report on the experience with the CTC curve update.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!