We report a study of the factors determining the sensitivity of NMR measurements using bulk metal single crystal samples. We show that, in an ideal case, the NMR signal intensity from such a sample can be characterized by a figure of merit which is a function of only the fractional radio-frequency power losses in the coil winding compared to the losses in the sample. This allows the Q factor of the NMR coil to be varied considerably with no appreciable change in the figure of merit, thus permitting the coil Q to be chosen on the basis of the noise characteristics of the spectrometer being used. Measurements indicate that the absolute signal intensity from a metal single crystal with a near-optimum coil is about 1/10 of that from a powdered sample with particle radii approximately equal to the rf skin depth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1135249 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
KU Leuven: Katholieke Universiteit Leuven, Chemistry, BELGIUM.
Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China.
Electrochemical nitrate reduction to ammonia (NORR) is promising to not only tackle environmental issues caused by nitrate but also produce ammonia at room temperatures. However, two critical challenges are the lack of effective electrocatalysts and the understanding of related reaction mechanisms. To overcome these challenges, we employed first-principles calculations to thoroughly study the performance and mechanisms of triple-atom catalysts (TACs) composed of transition metals (including 27 homonuclear TACs and 4 non-noble bimetallic TACs) anchored on N-doped carbon (NC).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Faculty of Engineering & Technology, Marwadi University, Rajkot-Morbi Road, Rajkot 360003, Gujarat, India.
Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!