A double-focusing mass spectrometer (MS) equipped with a superconducting-tunnel-junction (STJ) detector has been applied to measure relative ionization cross-sections for the production of ions that are accompanied by different ion species with the same mass-to-charge (m/z) value. The STJ detector fabricated for this study enables kinetic energy (E) measurement of incoming individual ions at a counting rate of up to approximately 100 k ions/s and an energy resolution (DeltaE/E) of 15%. Both high counting rate and high-energy resolution are necessary to independently determine both m and z and not the m/z value only in ion-counting MS experiments. Ions such as (14)N(2) (2+) and (14)N(+) with the same m/z value can be clearly discriminated using a kinetic-energy-sensitive MS. This fine discrimination capability allows direct determination of relative ionization cross-sections of the homonuclear diatomic ions (14)N(2) (2+)/(14)N(2) (+) and (16)O(2) (2+)/(16)O(2) (+), which are difficult to measure due to the strong interference by the signals of their dissociated atomic ions with noticeably large ionization cross-sections. The new instrument requires no low-abundance heteronuclear diatomic molecules of the forms (14)N(15)N or (16)O(17)O to carry out ionization studies and thus, is expected to be useful in fields such as atmospheric science, interstellar science, or plasma physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.1459 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!