The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes.

PLoS One

Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.

Published: August 2008

Background: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms.

Methodology/principal Findings: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy.

Conclusions/significance: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492810PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002944PLOS

Publication Analysis

Top Keywords

bzip genes
12
transcription factors
8
founder genes
8
processes eukaryotes
8
stress responses
8
genes
6
bzip
5
role bzip
4
bzip transcription
4
factors green
4

Similar Publications

[Genetic Mutation Profile and Risk Stratification of Cytogenetically Normal Acute Myeloid Leukemia with Mutations Based on Multi-Gene Sequencing].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University,Beijing 100044, China.

Objective: To evaluate the gene mutation profile and prognostic significance of adult cytogenetically normal acute myeloid leukemia (CN-AML) with mutation.

Methods: Targeted sequencing was implemented on the diagnostic bone marrow DNA samples of 141 adult CN-AML subjects with mutation. The nomogram model for leukemia-free survival (LFS) rate was generated by combining genetic abnormalities and clinical data.

View Article and Find Full Text PDF

Background: Alfalfa (Medicago sativa L.) is an important high-quality forage crop. Low temperature is an abiotic stress factor that affects the distribution and productivity of alfalfa.

View Article and Find Full Text PDF

Melatonin (MT) serves an indispensable function in plant development and their response to abiotic stress. Although numerous drought-tolerance genes have been ascertained in wheat, further investigation into the molecular pathways controlling drought stress tolerance remains necessary. In this investigation, it was observed that MT treatment markedly enhanced drought resistance in wheat by diminishing malondialdehyde (MDA) levels and augmenting the activity of antioxidant enzymes POD, APX, and CAT compared to untreated control plants.

View Article and Find Full Text PDF

Regulation of PILS genes by bZIP transcription factor TGA7 in tomato plant growth.

Plant Sci

December 2024

Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute, Zhejiang University, Sanya 572025, PR China. Electronic address:

Auxin plays a pivotal role in plant growth regulation. The PIN-FORMED (PIN) proteins facilitate long-distance polar auxin transport, whereas the recently identified PIN-LIKES (PILS) proteins regulate intracellular auxin homeostasis. However, the auxin transport mechanisms in horticultural crops remain largely unexplored.

View Article and Find Full Text PDF

Common oat ( L.) is one of the important minor grain crops in China, and drought stress severely affects its yield and quality. To investigate the drought resistance characteristics of oat seedlings, this study used Baiyan 2, an oat cultivar at the three-leaf stage, as the experimental material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!