Purpose: The epidermal growth factor receptor family member HER3 is overexpressed in diverse human cancers and has been associated with poor prognosis in breast, lung, and ovarian cancer. However, the relevance of HER3 with regard to its prognostic significance and function in primary melanoma and metastases remains largely elusive.
Experimental Design: HER3 protein expression was analyzed immunohistochemically using tissue microarrays of 130 primary melanoma and 87 metastases relative to established clinical variables. The possibility of an influence of HER3 on melanoma cell proliferation, migration, invasion, and chemotherapy-induced apoptosis was studied in human melanoma cell lines.
Results: We show that HER3 is frequently expressed in malignant melanoma and metastases at elevated levels. High HER3 expression may serve as a prognostic marker because it correlates with cell proliferation, tumor progression, and reduced patient survival. Suppression of HER3 expression by RNA interference reduces melanoma cell proliferation, migration, and invasion in vitro. In addition, down-regulation of HER3 synergistically enhances dacarbazine-induced apoptosis. Moreover, monoclonal antibodies specific for the extracellular portion of HER3 efficiently block heregulin-induced proliferation, migration, and invasion of melanoma cell lines.
Conclusion: Our results provide novel insights into the role of HER3 in melanoma and point out new possibilities for therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-08-0186 | DOI Listing |
Clin Transl Med
January 2025
Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
Backgroud: Oesophageal cancer ranks among the most prevalent malignant tumours globally, primarily consisting of oesophageal squamous cell carcinoma (ESCC). Cancer stem cells (CSCs) accelerate the progression ESCC via their strong self-renewal and tumourigenic capabilities, presenting significant clinical challenges due to increased risks of recurrence and drug resistance.
Methods: Our previous study has reported WYC-209, which is capable of inducing apoptosis of CSCs in melanoma and hepatoma, but is ineffective against ESCC.
JAMA Oncol
December 2024
Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
Importance: Progressive disease (PD) in patients treated with immune checkpoint inhibitors (ICIs) varies widely in outcomes according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1. Efforts to modify RECIST for ICI treatment have not resolved the heterogeneity in PD patterns, posing a clinical challenge.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.
Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).
View Article and Find Full Text PDFInt J Pharm
December 2024
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China; Key Laboratory of Marine Fishery Resources Employment & Utilization of Zhejiang Province, Hangzhou 310014, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!