Poly(styrene-block-isobutylene-block-styrene) ('SIBS') is selected for a novel tri-leaflet heart valve due to its high resistance to oxidation, hydrolysis, and enzyme attack. SIBS is modified using six different phospholipids and its mechanical properties characterized by tensile stress, peel strength, shear strength, contact angle, and surface energy, and then for hemocompatibility by studying the adhesion of fluorescently labeled platelets in a parallel plate chamber under physiological flow conditions. Phospholipid modification decreases SIBS tensile stress (at 45% strain) by 30% and reduces platelet adhesion by a factor of 10, thereby improving its hemocompatibility and its potential use as a synthetic heart valve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0885328208093854 | DOI Listing |
Nanoscale
January 2025
Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China.
Gold nanorods (AuNRs) have shown great potential as photothermal agents for cancer therapy. However, the biosafety of AuNRs ordinarily synthesized using a cationic ligand assistance procedure has always been a subject of controversy, which limits their application in tumor therapy. In this study, we propose a novel strategy to enhance the biocompatibility of AuNRs by constructing a biological coating derived from silk fibroin (SF) on their surface.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:
Biofilm formation on biological and material surfaces represents a heavy health and economic burden for both patient and society. To contrast this phenomenon, medical devices combining antibacterial and pro-wound healing abilities are a promising strategy. In the present work, Xanthan gum/Guar gum (XG/GG)-based scaffolds were tuned with thymol and Zn to obtain wound dressings that combine antibacterial and antibiofilm properties and favour the healing process.
View Article and Find Full Text PDFSci Rep
January 2025
Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In the current research, we developed a safe method using Iranian yarrow extract for the synthesis of silver nanoparticles (IY-AgNPs) as reducing and stabilizing agents in different conditions. The prepared and stabilized IY-AgNPs under optimal conditions were characterized using FT-IR, XRD, TEM, and UV-vis techniques. Also, the blood-clotting, hemolytic, antioxidant, bactericidal and, fungicidal properties, cytotoxicity effects and inhibition of protein denaturation efficiency of IY-AgNPs were assessed in vitro.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
Despite the unique properties of clay nanocomposites for cardiovascular applications, there are few data on the hemocompatibility of these nanomaterials. This study represents the first comprehensive investigation of the hemo/biocompatibility of clay nanocomposites . Nanocomposite coatings of polylactic acid (PLA)-polyethylene glycol (3 wt %)-Cloisite20A nanoclay (3 wt %) were produced using electrospraying technique as potential drug-eluting stent (DES) coatings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!