Laminins are the major cell adhesive proteins in basement membranes, and consist of three subunits termed alpha, beta, and gamma. Recently, we found that the Glu residue at the third position from the C termini of the gamma1 and gamma2 chains is critically involved in integrin binding by laminins. However, the gamma3 chain lacks this Glu residue, suggesting that laminin isoforms containing the gamma3 chain may be unable to bind to integrins. To address this possibility, we expressed the E8 fragment of laminin-213 and found that it was incapable of binding to integrins. Similarly, the E8 fragment of laminin-113 was expressed and also found to be inactive in binding to integrins, confirming the distinction between the integrin binding activities of gamma3 chain-containing isoforms and those containing the gamma1 or gamma2 chain. To further address the importance of the Glu residue, we swapped the C-terminal four amino acids of the gamma3 chain with the C-terminal nine amino acids of the gamma1 chain, which contain the Glu residue. The resulting chimeric E8 fragment of laminin-213 became fully active in integrin binding, whereas replacement with the nine amino acids of the gamma1 chain after substitution of Gln for the conserved Glu residue failed to restore the integrin binding activity. These results provide both loss-of-function and gain-of-function evidence that laminin isoforms containing the gamma3 chain are unable to bind to integrins due to the absence of the conserved Glu residue, which should play a critical role in integrin binding by laminins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661386PMC
http://dx.doi.org/10.1074/jbc.M803553200DOI Listing

Publication Analysis

Top Keywords

glu residue
24
gamma3 chain
20
integrin binding
20
laminin isoforms
12
isoforms gamma3
12
chain unable
12
unable bind
12
bind integrins
12
gamma1 gamma2
12
amino acids
12

Similar Publications

Tetrodotoxin (TTX), a potent Site-1 sodium channel blocker (S1SCB), offers highly effective local anesthetic properties with minimal addiction potential. To fully leverage TTX's capabilities as a local anesthetic, it is crucial to develop a drug delivery system that balances its systemic toxicity with its therapeutic efficacy. Recent studies have shown that peptide mixtures, derived from fragments of Site-1 sodium channel proteins and enhanced with hydrophobic tails (designated MP1 and MP2), can self-assemble into nanostructures that exhibit remarkable sustained-release capabilities for TTX.

View Article and Find Full Text PDF

In this study, the absolute electrostatic charge of myofibrillar protein (MP) was substantially increased by protein-glutaminase (PG) treatment, which was a critical step for achieving the dissociation and solubility of MP under low salt condition. The PG-treated MP exhibited the capacity to form thermo-reversible gels that could be melted through heating and subsequently reformed into a stable gel structure upon refrigeration. The results of SDS-PAGE further revealed that the levels of soluble monomeric myosin and actin in the supernatant of deamidated MP (DMP) gels were markedly elevated, and confirmed the increased formation of intermolecular disulfide bond between myosin and actin.

View Article and Find Full Text PDF

The role of ribosomal protein networks in ribosome dynamics.

Nucleic Acids Res

January 2025

Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France.

Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics.

View Article and Find Full Text PDF

Molecular recognition of the promoter DNA signature sequence by Hms1p.

Int J Biol Macromol

January 2025

MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. Electronic address:

Transcriptional regulation of sterol biosynthetic genes is mediated by conserved sterol-regulatory element binding proteins (SREBPs) in human pathogenic fungi, however, its homolog in S. cerevisiae regulate filamentous growth during stress conditions. These pseudohyphal growths might be associated with the expression of MEP2 gene in response to ammonium limitation.

View Article and Find Full Text PDF

Molecular insights into a distinct class of terpenoid cyclases.

Nat Commun

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.

Article Synopsis
  • Terpenoid cyclases (TCs) are crucial for producing diverse natural compounds, with the BcABA3 enzyme from the fungus Botrytis cinerea representing a unique type that deviates from typical TCs.
  • Crystal structures of BcABA3 and related enzymes show they have an all-α-helix fold and interact with specific substrates through a unique binding mechanism.
  • Findings suggest significant potential for exploring more uncharacterized terpenoids synthesized by these enzymes, highlighting the need for further research in this area.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!