Convincing evidence supports a role for oxidative stress in the pathogenesis of many chronic diseases. The model includes the formation of radical oxygen species (ROS) and the misassembly and aggregation of proteins when three tiers of cellular defence are insufficient: (a) direct antioxidative systems, (b) molecular damage repairing systems, and (c) compensatory chaperone synthesis. The aim of the present overview is to introduce (a) the basics of free radical and antioxidant metabolism, (b) the role of the protein quality control system in protecting cells from free radical damage and its relation to chronic diseases, (c) the basics of the ultraweak luminescence as marker of the oxidant status of biological systems, and (d) the research in human photon emission as a non-invasive marker of oxidant status in relation to chronic diseases. In considering the role of free radicals in disease, both their generation and their control by the antioxidant system are part of the story. Excessive free radical production leads to the production of heat shock proteins and chaperone proteins as a second line of protection against damage. Chaperones at the molecular level facilitate stress regulation vis-à-vis protein quali y control mechanisms. The manifestation of misfolded proteins and aggregates is a hallmark of a range of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amylotrophic lateral sclerosis, polyglutamine (polyQ) diseases, diabetes and many others. Each of these disorders exhibits aging-dependent onset and a progressive, usually fatal clinical course. The second part reviews the current status of human photon emission techniques and protocols for recording the human oxidative status. Sensitive photomultiplier tubes may provide a tool for non-invasive and continuous monitoring of oxidative metabolism. In that respect, recording ultraweak luminescence has been favored compared to other indirect assays. Several biological models have been used to illustrate the technique in cell cultures and organs in vivo. This initiated practical applications addressing specific human pathological issues. Systematic studies on human emission have presented information on: (a) procedures for reliable measurements, and spectral analysis, (b) anatomic intensity of emission and left-right symmetries, (c) biological rhythms in emission, (d) physical and psychological influences on emission, (e) novel physical characteristics of emission, and (f) the identification of ultraweak photon emission with the staging of ROS-related damage and disease. It is concluded that both patterns and physical properties of ultraweak photon emission hold considerable promise as measure for the oxidative status.

Download full-text PDF

Source

Publication Analysis

Top Keywords

photon emission
20
chronic diseases
12
free radical
12
emission
10
free radicals
8
relation chronic
8
ultraweak luminescence
8
marker oxidant
8
oxidant status
8
human photon
8

Similar Publications

Using tremendous photon statistics gained with the stray light aperture of the NuSTAR telescope over 11 years of operation, we set strong limits on the emission of close to monochromatic photons from the radiative decays of putative dark matter sterile neutrinos in the Milky Way. In the energy range of 3-20 keV covered by the NuSTAR, the obtained limits reach the bottom edge of theoretical predictions of realistic models where sterile neutrinos are produced in the early Universe. Only a small region is left to explore, if the sterile neutrinos form the entire dark matter component.

View Article and Find Full Text PDF

Absorption-Emission Codes for Atomic and Molecular Quantum Information Platforms.

Phys Rev Lett

December 2024

University of Maryland, NIST, Joint Center for Quantum Information and Computer Science, /, College Park, Maryland 20742, USA.

Diatomic molecular codes [V. V. Albert, J.

View Article and Find Full Text PDF

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

Cardiac Positron Emission Tomography (PET) can be used for the assessment of myocardial perfusion. Compared to other cardiac imaging techniques, notably Single Photon Emission Computer Tomography (SPECT), cardiac PET offers superior image resolution, higher accuracy, quantitative measures of myocardial perfusion, lower radiation exposure, and shorter image acquisition time. However, PET tends to be costlier and less widely available than SPECT due to the specialized equipment needed for generating the necessary radiotracers.

View Article and Find Full Text PDF

Towards the Stable Chelation of Radioantimony(V) for Targeted Auger Theranostics.

Angew Chem Int Ed Engl

January 2025

Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.

Antimony-119 (119Sb) is one of the most attractive Auger-electron emitters identified to date, but it remains practically unexplored for targeted radiotherapy because no chelators have been identified to stably bind this metalloid in vivo. In a departure from current studies focused on chelator development for Sb(III), we explore the chelation chemistry of Sb(V) using the tris-catecholate ligand TREN-CAM. Through a combination of radiolabeling, spectroscopic, solid-state, and computational studies, the radiochemistry and structural chemistry of TREN-CAM with 1XX/natSb(V) were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!