In order to detect the in vitro activity of tigecycline against multiple resistant gram-negative bacilli isolated in our hospital, tigecycline susceptibilities of clinical isolates of multiple and/or panresistant 100 Acinetobacter baumannii isolates, and 38 carbapenem resistant Klebsiella pneumoniae (17 of which were panresistant), obtained between January 2005 and August 2007, were evaluated by using E-test (AB Biodisc, Sweden). Carbapenem resistance rate was found to be 59% for A.baumannii, using Vitek2 Compact System (Bio-Merieux, France) which is present in our laboratory for routine use. Minimal inhibitory concentration (MIC) levels for tigecycline were < or =2 mcg/ml in 93% of the isolates while the MIC level was 3 mcg/ml for 7% of the isolates. Tigecycline MIC50 and MIC 90 values were 1.5 and 2 mcg/ml, respectively. Among K. pneumoniae the least resistance was detected against amikacin (52.6% resistant) while tigecycline MIC levels were between 0.13 mcg/ml and 2 mcg/ml. All of the K.pneumoniae strains were susceptible to tigecycline, and the MIC50 ve MIC90 values of these isolates were 1 mcg/ml and 1.5 mcg/ml, respectively. The in vitro susceptibility rates of tigecycline against multiple and/or panresistant A. baumannii and K. pneumoniae isolates are found to be promising for use in therapy.
Download full-text PDF |
Source |
---|
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Achieving targeted hypermutation of specific genomic sequences without affecting other regions remains a key challenge in continuous evolution. To address this, we evolved a T7 RNA polymerase (RNAP) mutant that synthesizes single-stranded DNA (ssDNA) instead of RNA in vivo, while still exclusively recognizing the T7 promoter. By increasing the error rate of the T7 RNAP mutant, it generates mutated ssDNA that recombines with homologous sequences in the genome, leading to targeted genomic hypermutation.
View Article and Find Full Text PDFPathogens
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
The emergence of hypervirulent and carbapenem-resistant hypermucoviscous strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.
Background: Rising antimicrobial resistance (AMR) is an acute public health emergency impeding the clinical efficacy of surgical interventions. Biliary stent placement is one of the routine surgical procedures that rarely lead to infections that are empirically managed by broad-spectrum β-lactams and fluoroquinolones. Critical priority pathogens, such as carbapenem-resistant Escherichia coli challenge treatment outcomes and infection prevention.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.
View Article and Find Full Text PDFFront Pediatr
January 2025
Department of Hematology, Aerospace Center Hospital, Beijing, China.
Introduction: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) poses an increasing public health risk due to its high treatment difficulty and associated mortality, especially in bone marrow transplant (BMT) patients. The emergence of strains with multiple resistance mechanisms further complicates the management of these infections.
Methods: We isolated and characterized a novel ST11-KL64 hv-CRKP strain from a pediatric bone marrow transplantation patient.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!