Unlabelled: Hyperexpression of the programmed death 1 (PD-1) molecule is a hallmark of exhausted T-cells, having a negative impact on T-cell activation and function. We studied longitudinally 18 hepatitis B e antigen (HBeAg)-positive patients undergoing treatment with direct antivirals (telbivudine or lamivudine) to determine the relationship between treatment-induced viremia reduction and HBeAg seroconversion with respect to PD-1 levels and T-cell reactivity. PD-1 expression was assessed by (1) flow cytometry and (2) quantitative real-time polymerase chain reaction; hepatitis B virus (HBV)-specific CD8+ T-cells were quantitated by pentamer staining; T-cell reactivity to HBV antigens was determined by interferon gamma (IFNgamma) and interleukin 10 (IL-10) enzyme-linked immunosorbent spot (ELISPOT) assays; and central/effector memory phenotypes were defined by phenotypic markers. PD-1 expression correlated closely with viremia levels. On therapy, PD-1 decreased significantly on total CD8+ T-cells, HBV-specific CD8+ T-cells, and CD3+/CD8- T-cells both as the percentage of positive cells (P < 0.01) and as the mean fluorescent intensity (P < 0.05), and this was paralleled by a marked reduction of PD-1 messenger RNA levels (P = 0.001). HBeAg serocoversion (in 6/18 patients) resulted in a further PD-1 decrease with a 50% reduction in the frequency of PD-1+/CD8+ T-cells, which was not observed in patients remaining HBeAg-positive. The decrease in PD-1 expression was associated with increased frequencies of IFNgamma-producing T-cells and decreased frequencies of IL-10 producing T-cells. At baseline, PD-1 expression correlated directly with the frequency of hepatitis B core antigen (HBcAg) central and effector memory phenotypes, whereas an inverse correlation was observed between PD-1 expression and HBcAg-specific effector phenotypes.

Conclusion: These results demonstrate that in chronic HBV infection, both viremia levels and HBeAg drive PD-1 expression and resulting T-cell impairment. Treatment-induced suppression of HBV replication reduces PD-1 expression; however, additional immunotherapeutic interventions are needed for restoration of T-cell functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.22419DOI Listing

Publication Analysis

Top Keywords

pd-1 expression
28
pd-1
12
cd8+ t-cells
12
programmed death
8
expression
8
t-cells
8
t-cell reactivity
8
hbv-specific cd8+
8
memory phenotypes
8
expression correlated
8

Similar Publications

Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

Background: Metabolic pathways are known to significantly impact the development and advancement of lung cancer. This study sought to establish a signature related to butyrate metabolism that is specifically linked to lung adenocarcinoma (LUAD).

Methods: For the purpose of identifying butyrate metabolism-related differentially expressed genes (BMR-DEGs) in the TCGA-LUAD dataset, we introduced transcriptome data.

View Article and Find Full Text PDF

The expression of CD38 by cancer cells may mediate an immune-suppressive effect by producing Extracellular Adenosine (ADO) acting through G-protein-coupled cell surface receptors on cellular components and tumor cells. This can increase PD-1 expression and interaction with PD-L1, suppressing CD8 + cytotoxic T cells. This study examines the impact of heightened CD38 expression and extracellular ADO on various hematological and clinical parameters in patients with mature B-cell lymphoma, alongside their correlation with the soluble counterparts of the PD-1/PD-L1 axis.

View Article and Find Full Text PDF

Brain metastasis (BM) is a poor prognostic factor in cancer patients. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 monoclonal antibody (mAb) or anti-CTLA-4 mAb appears to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA-4 mAbs has a potent antitumor effect on BM, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!