Formation of somatic embryos from non-germline cells is unique to higher plants and can be manipulated in a variety of species. Previous studies revealed that overexpression of several Arabidopsis genes, including WUSCHEL (WUS)/PLANT GROWTH ACTIVATOR6 (PGA6), BABY BOOM, LEAFY COTYLEDON1 (LEC1), and LEC2, is able to cause vegetative-to-embryonic transition or the formation of somatic embryos. Here, we report that a gain-of-function mutation in the Arabidopsis PGA37 gene, encoding the MYB118 transcription factor, induced vegetative-to-embryonic transition, the formation of somatic embryos from root explants, and an elevated LEC1 expression level. Double mutant analysis showed that WUS was not required for induction of somatic embryos by PGA37/MYB118. In addition, overexpression of MYB115, a homolog of PGA37/MYB118, caused a pga37-like phenotype. A myb118 myb115 double mutant did not show apparent developmental abnormalities. Collectively, these results suggest that PGA37/MYB118 and MYB115 promote vegetative-to-embryonic transition, through a signaling pathway independent of WUS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/cr.2008.276 | DOI Listing |
New Phytol
May 2024
National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
The potential for totipotency exists in all plant cells; however, the underlying mechanisms remain largely unknown. Earlier findings have revealed that the overexpression of LEAFY COTYLEDON 2 (LEC2) can directly trigger the formation of somatic embryos on the cotyledons of Arabidopsis. Furthermore, cotyledon cells that overexpress LEC2 accumulate significant lipid reserves typically found in seeds.
View Article and Find Full Text PDFPlanta
January 2016
Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
BMC Plant Biol
May 2015
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
Background: Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species.
View Article and Find Full Text PDFPlant Physiol
August 2013
Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7.
Embryogenesis in flowering plants is controlled by a complex interplay of genetic, biochemical, and physiological regulators. LEAFY COTYLEDON2 (LEC2) is among a small number of key transcriptional regulators that are known to play important roles in controlling major events during the maturation stage of embryogenesis, notably, the synthesis and accumulation of storage reserves. LEC2 overexpression causes vegetative tissues to change their developmental fate to an embryonic state; however, little information exists about the cellular changes that take place.
View Article and Find Full Text PDFPlant Mol Biol
July 2010
Laboratory of Plant Breeding, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan.
Although several types of plant cells retain the competence to enter into embryonic development without fertilization, the molecular mechanism(s) underlying ectopic embryogenesis is largely unknown. To gain insight into this mechanism, in a previous study we identified 136 ESTs specifically expressed in microspore embryogenesis of Brassica napus. Here, we describe the characterization of the Arabidopsis EMBRYOMAKER (EMK) gene, which is homologous to one of the identified Brassica ESTs (BnGemb-58) and encodes an AP2 domain transcription factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!