Changes in S-adenosylmethionine and GSH homeostasis during endotoxemia in mice.

Lab Invest

Department of Medicine, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine USC, Los Angeles, CA 90033, USA.

Published: October 2008

Endotoxemia participates in the pathogenesis of many liver injuries. Lipopolysaccharide (LPS) was shown to inactivate hepatic methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (SAMe) biosynthesis. SAMe treatment was shown to prevent the LPS-induced increase in tumor necrosis factor-alpha, which may be one of its beneficial effects. SAMe is also an important precursor of glutathione (GSH) and GSH was shown to ameliorate LPS-induced hepatotoxicity. The aims of this work were to examine changes in SAMe and GSH homeostasis during endotoxemia and the effect of SAMe. Mice received SAMe or vehicle pretreatment followed by LPS and were killed up to 18 h afterward. Unexpectedly, we found hepatic SAMe level increased 67% following LPS treatment while S-adenosylhomocysteine level fell by 26%, suggesting an increase in SAMe biosynthesis and/or block in transmethylation. The mRNA and protein levels of MAT1A and MAT2A were increased following LPS. However, despite increased MAT1A expression, MAT activity remained inhibited 18 h after LPS. The major methyltransferase that catabolizes hepatic SAMe is glycine N-methyltransferase, whose expression fell by 65% following LPS. Hepatic GSH level fell more than 50% following LPS, coinciding with a comparable fall in the mRNA and protein levels of glutamate-cysteine ligase (GCL) catalytic (GCLC) and modifier subunits (GCLM). SAMe pretreatment prevented the fall in GCLC and attenuated the fall in GCLM expression and GSH level. SAMe pretreatment prevented the LPS-induced increase in plasma alanine transaminases levels but not the LPS-induced increase in hepatic mRNA levels of proinflammatory cytokines. It further enhanced LPS-induced increase in interleukin-10 mRNA level. Taken together, the hepatic response to LPS is to upregulate MAT expression and inhibit SAMe utilization. GSH is markedly depleted largely due to lower expression of GCL. Interestingly, SAMe treatment prevented the fall in GCL and helped to preserve the GSH store and prevent liver injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467989PMC
http://dx.doi.org/10.1038/labinvest.2008.69DOI Listing

Publication Analysis

Top Keywords

lps-induced increase
16
gsh
8
gsh homeostasis
8
homeostasis endotoxemia
8
endotoxemia mice
8
lps
8
level fell
8
mrna protein
8
protein levels
8
gsh level
8

Similar Publications

Thymol and Carvacrol as Potential Tocolytic and Anti-inflammatory Agents in Pregnant Rat Uterus.

Curr Mol Pharmacol

January 2025

Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México.

Introduction: This work aimed to evaluate the anti-inflammatory and myorelaxant effect of thymol (TM) and carvacrol (CAR) in the pregnant rat uterus. Both compounds exhibit considerable antimicrobial, antispasmodic, and anti-inflammatory effects and due to these properties, they were studied in this in vitro model of premature birth induced by infection.

Method: All uterine tissues were studied in uterine contraction tests to determine the inhibitory effect of TM, CAR (10, 56, 100, 150, and 230 μM), and nifedipine (a calcium channel antagonist) on phasic and tonic contraction induced by electro- and pharmacomechanical stimuli.

View Article and Find Full Text PDF

Maejo 341 Sweet potato (MSP) is a new purple sweet potato variety cultivated in Northern Thailand, but its health benefits are unknown. This study aimed to investigate its antioxidant, anti-inflammatory, and anti-osteoporotic activities, as well as its anthocyanin content. The peel and flesh of MSP were extracted with ethanol and water.

View Article and Find Full Text PDF

[Mechanism of inflammatory microecological response to TAS2R14/SIgA/TSLP in regulating epithelial cell barrier in cold asthma rats through lung-gut axis by using Shegan Mahuang Decoction and bitter and purging Chinese herbs].

Zhongguo Zhong Yao Za Zhi

December 2024

Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Application and Transformation of Traditional Chinese Medicine in Prevention and Treatment of Major Pulmonary Diseases Hefei 230031, China Key Laboratory of Xin'an Medicine, Ministry of Education Hefei 230038, China.

This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats.

View Article and Find Full Text PDF

Enhanced inflammatory and immune responses have been observed in patients with major depressive disorder, pointing to anti-inflammatory substances as potential seeds for developing novel antidepressants. Omega-3 polyunsaturated fatty acid metabolites, such as resolvin D and E series, maresins, and protectins (collectively known as specialized pro-resolving mediators) demonstrate anti-inflammatory effects. This study examined the antidepressant-like effects of maresin-1 (MaR1) on lipopolysaccharide (LPS)-induced depression-like behaviors in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!