Objective: Free radicals that escape scavenging by antioxidant defense damage lipids, proteins, and DNA. Damage to DNA can be repaired. Therefore, both cells' antioxidant defense and their ability to repair oxidatively damaged DNA decide its fate to survive oxidative stress. Pancreatic islets cells with poor antioxidant defense were checked for their ability to remove oxidative damage form DNA.

Methods: For ex vivo DNA repair, assay-cultured pancreatic islets and liver slices were treated with 1 and 10 mM H2O2, respectively, for 30 minutes. After incubation for different time intervals, 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA of these cells was estimated using monoclonal antibody raised against 8-OHdG by competitive enzyme-linked immunosorbent assay. For in vitro DNA repair assay, oxidatively damaged pBR322 was incubated with nuclear extracts of islet and liver cells, and 8-OHdG retained in the plasmid was quantitated.

Results: Oxidative damage induced by H2O2 was removed quickly and efficiently from DNA by liver cells compared with islet cells. The repair of oxidatively damaged plasmid DNA in vitro was also performed more efficiently (P < 0.05) by nuclear extracts from liver cells compared with islet cell.

Conclusions: We clearly demonstrate that in addition to their low antioxidant defense, islets are very poor in rectifying the oxidative DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPA.0b013e318181da4eDOI Listing

Publication Analysis

Top Keywords

antioxidant defense
16
pancreatic islets
12
dna damage
12
oxidatively damaged
12
liver cells
12
dna
10
islets poor
8
poor rectifying
8
rectifying oxidative
8
oxidative dna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!