A scintillating gas detector for 2D dose measurements in clinical carbon beams.

Phys Med Biol

Foundation for Fundamental Research and Matter (FOM), Utrecht, The Netherlands.

Published: September 2008

A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/53/17/013DOI Listing

Publication Analysis

Top Keywords

scintillating gas
24
gas detector
20
dosimetry system
8
gas
8
dose distributions
8
hadron therapy
8
sensitive volume
8
incoming beam
8
dose distribution
8
scintillating
7

Similar Publications

This paper presents the initial results of the synthesis of β-GaO luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with a self-aligning arc length and an expanding channel of an output electrode served as a plasma source. The feedstock material consisted of a polydisperse powder of monocrystalline β-GaO with particle sizes ranging from 5 to 50 μm.

View Article and Find Full Text PDF

Ion implantation is widely utilised for the modification of inorganic semiconductors; however, the technique has not been extensively applied to lead halide perovskites. In this report, we demonstrate the modification of the optical properties of caesium lead bromide (CsPbBr) thin films via noble gas ion implantation. We observed that the photoluminescence (PL) lifetimes of CsPbBrthin films can be doubled by low fluences (<1 × 10at·cm) of ion implantation with an acceleration voltage of 20 keV.

View Article and Find Full Text PDF

Objective: Aim: To identify appropriate methods for determining the content of radioactive and non-radioactive pulmotoxic xenobiotics in the ambient air of NPP equipment to ensure its reliability, radiation and environmental safety, as well as to reduce the risks of occupational pathologies for workers and protect people's health.

Patients And Methods: Materials and Methods: Analytical methods of analysis of modern methods of determining the content of radioactive and non-radioactive pulmonary toxic xenobiotics in the ambient air of NPP equipment.

Conclusion: Conclusions: a) during operation of NPP equipment, pulmotoxic xenobiotics enter the surrounding air, which can then enter the human respiratory system in the form of radioactive or non-radioactive substances; b) signif i cant methods of determining the content of pulmotoxic xenobiotics in the air are: gas chroma-tography; gas chromatography-mass spectrometry; liquid scintillation; photometric, ionometric, polarographic, titrometric, turbidimetric, atomic absorption, radiometric and γ-spectrometric measurements; c) radioactive pulmonotoxic xenobiotics cause radiation pathologies in the respiratory organs as a result of internal radioactive irradiation of the body; d) the effects of non-radioactive pulmotoxic xenobiotics are accompanied by irritation and inf l ammatory processes in the respiratory organs, as well as toxic swelling of the lungs; е) there is a connection between the presence of pulmotoxic xenobiotics in the air and the course of human respiratory diseases as a result of breathing such air.

View Article and Find Full Text PDF

The CYGNO experiment aims to build a large ( m ) directional detector for rare event searches, such as nuclear recoils (NRs) induced by dark matter (DM), such as weakly interactive massive particles (WIMPs). The detector concept comprises a time projection chamber (TPC), filled with a He:CF 60/40 scintillating gas mixture at room temperature and atmospheric pressure, equipped with an amplification stage made of a stack of three gas electron multipliers (GEMs) which are coupled to an optical readout. The latter consists in scientific CMOS (sCMOS) cameras and photomultipliers tubes (PMTs).

View Article and Find Full Text PDF

Significant efforts have been devoted to removal and recycling of microplastics (MPs; <5 mm) to address the environmental crises caused by their ubiquitous presence and improper treatment. Metal-organic frameworks (MOFs) demonstrate compatibility with MPs/plastics through adsorption, degradation, or assembly with the MPs/plastic polymers. Above 90% of MPs/plastic particles can be adsorbed on MOF materials the hydrophobic interaction, electrical attraction, π-π stacking, and van der Waals forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!