Objective: Toxic thyroid adenoma (TA) is a common cause of hyperthyroidism. Mutations in the TSH receptor (TSHR) gene, and less frequently in the adenylate cyclase-stimulating G alpha protein (GNAS) gene, are well established causes of TA in Europe. However, genetic causes of TA remain unknown in a small percentage of cases. We report the first study to investigate mutations in TSHR, GNAS, protein kinase, cAMP-dependent, regulatory, type I alpha (PRKAR1A) and RAS genes, in a large series of TA from Galicia, an iodine-deficient region in NW Spain.

Design And Methods: Eighty-five TA samples were obtained surgically from 77 hyperthyroid patients, operated on for treatment of non-autoimmune toxic nodular goitre. After DNA extraction, all coding exons of TSHR, GNAS and PRKAR1A genes, and exons 2 and 3 of HRAS, KRAS and NRAS were amplified by PCR and sequenced. Previously unreported mutants were cloned in expression vectors and their basal constitutive activities were determined by quantification of cAMP response element (CRE)-luciferase activity in CO7 cells transfected with wild-type and mutant plasmids.

Results: TSHR gene mutations were found in 52 (61.2%) samples, GNAS gene mutations in 4 (4.71%) samples and no PRKAR1A or RAS mutations were found. Only three previously unreported mutations were found, two affecting the TSHR, A623F and I635V, and one affecting the G-protein alpha-subunit (Gsalpha), L203P. All mutant proteins showed higher CRE-luciferase activity than their wild-type counterparts.

Conclusions: TA in a hyperthyroid population living in Galicia, a Spanish iodine-deficient region, harbours elevated frequencies of TSHR and GNAS mutations activating the cAMP pathway. However, the genetic cause of TA was undetermined in 34% of the TA samples.

Download full-text PDF

Source
http://dx.doi.org/10.1530/EJE-08-0313DOI Listing

Publication Analysis

Top Keywords

tshr gnas
16
mutations tshr
12
prkar1a ras
12
gnas prkar1a
8
ras genes
8
genes large
8
large series
8
toxic thyroid
8
galicia iodine-deficient
8
tshr gene
8

Similar Publications

Objectives: The aim was to evaluate the clinical, ultrasound (US) and, when indicated, the cytological and histological characteristics of autonomously functioning thyroid nodules (AFTN) in consecutive patients.

Methods: A prospective, single-centre study was conducted between March 2018 and September 2021. In total, 901 consecutive patients were referred for thyroid workup and of 67 AFTN were evaluated.

View Article and Find Full Text PDF

The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway.

Front Endocrinol (Lausanne)

November 2022

BZI Pharma LLC, Birmingham, AL, United States.

The cAMP-signaling cancers, which are defined by functionally-significant somatic mutations in one or more elements of the cAMP signaling pathway, have an unexpectedly wide range of cell origins, clinical manifestations, and potential therapeutic options. Mutations in at least 9 cAMP signaling pathway genes (, and ) have been identified as driver mutations in human cancer. Although all cAMP-signaling pathway cancers are driven by mutation(s) that impinge on a single signaling pathway, the ultimate tumor phenotype reflects interactions between five critical variables: (1) the precise gene(s) that undergo mutation in each specific tumor type; (2) the effects of specific allele(s) in any given gene; (3) mutations in modifier genes (mutational "context"); (4) the tissue-specific expression of various cAMP signaling pathway elements in the tumor stem cell; and (5) and the precise biochemical regulation of the pathway components in tumor cells.

View Article and Find Full Text PDF

Follicular-patterned tumors of the thyroid in the adult population frequently harbor RAS mutations or PAX8-PPARG rearrangement, but little is known about molecular profiles in the pediatric patients with thyroid tumors, which is rare. To identify the molecular profile of pediatric follicular-patterned tumors, we enrolled 41 pediatric patients with follicular-patterned tumors from two institutions. We did next-generation sequencing using a mutation panel targeting 49 thyroid-tumor-related genes and a fusion panel targeting 88 types of thyroid-related gene fusions.

View Article and Find Full Text PDF

Introduction: Hyperfunctioning papillary thyroid carcinoma (PTC) is rare and consequently, little information on its molecular etiology is available. Although V600E ( c.1799T>A, p.

View Article and Find Full Text PDF

Background: Some thyroid nodules cytologically presenting as follicular neoplasm, Hürthle cell (Oncocytic) type (FNHCT), are not oncocytic tumors and represent autonomously functioning thyroid nodules (AFTNs) with TSHR, GNAS, and EZH1 mutations or oncocytic metaplasia. A to be defined subset of FNHCT harbors genome haploidisation-type DNA copy number alterations (GH-CNA). Molecular profiling of FNHCT may distinguish oncocytic neoplasms from its mimics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!