AI Article Synopsis

Article Abstract

Previous studies indicate that the nitric oxide (NO) increase at fertilization in sea urchin eggs is Ca(2+)-dependent and attributed to the late Ca(2+) rise. However, its role in fertilization still remains unclear. Simultaneous measurements of the activation current, by a single electrode voltage clamp, and NO, using the NO indicator DAF-FM, showed that the NO increase occurred at the time of peak current (t(p)) which corresponds to peak [Ca(2+)](i), suggesting that NO is not related to any other ionic changes besides [Ca(2+)](i). We measured O(2) consumption by a polarographic method to examine whether NO regulated a respiratory burst for protection as reported in other biological systems. Our results suggested NO increased O(2) consumption. The fluorescence of reduced pyridine nucleotides, NAD(P)H was measured in controls and when the NO increase was eliminated by PTIO, a NO scavenger. Surprisingly, PTIO decreased the rate of the fluorescence change and the late phase of increase in NAD(P)H was eliminated. PTIO also suppressed the production of H(2)O(2) and caused weak and high fertilization envelope (FE). Our results suggest that NO increase upregulates NAD(P)H and H(2)O(2) production and consolidates FE hardening by H(2)O(2).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2008.07.023DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
oxide increase
8
increase fertilization
8
fertilization sea
8
sea urchin
8
urchin eggs
8
fertilization envelope
8
eliminated ptio
8
increase
6
fertilization
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!