Functional cell-based assays in microliter volumes for ultra-high throughput screening.

Comb Chem High Throughput Screen

Molecular Screening Technology, Bayer HealthCare AG, Bayer-Schering Pharma, Wuppertal, Germany.

Published: August 2008

Functional cell-based assays have gained increasing importance for microplate-based high throughput screening (HTS). The use of high-density microplates, most prominently 1536-well plates, and miniaturized assay formats allow screening of comprehensive compound collections with more than 1 million compounds at ultra-high throughput, i.e. in excess of 100,000 samples per day. uHTS operations with numerous campaigns per year should generally support this throughput at all different steps of the process, including the underlying compound logistics, the (automated) testing of the corporate compound collection in the bioassay, and the subsequent follow-up studies for hit confirmation and characterization. A growing number of reports document the general feasibility of cell-based uHTS in microliter volumes. In addition, full automation with integrated robotic systems allows the realization of also complex assay protocols with multiple liquid handling and signal detection steps. For this review, cell-based assays are categorized based on the kinetics of the cellular response to be quantified in the test and the readout method employed. Thus, assays measuring fast cellular responses with high temporal resolution, e.g., receptor mediated calcium signals or changes in membrane potential, are at one end of this spectrum, while tests quantifying cellular transcriptional responses mark the opposite end. Trends for cell-based uHTS assays developed at Bayer-Schering Pharma are, first, to incorporate assay integral reference signals allowing the experimental differentiation of target hits from non-specifically acting compounds, and second, to make use of kinetic, real-time readouts providing additional information on the mode-of-action of test compounds.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138620708785204054DOI Listing

Publication Analysis

Top Keywords

cell-based assays
12
functional cell-based
8
microliter volumes
8
ultra-high throughput
8
throughput screening
8
cell-based uhts
8
assays
5
assays microliter
4
volumes ultra-high
4
throughput
4

Similar Publications

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

In vitro study of a siRNA delivery liposome constructed with an ionizable cationic lipid.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Pharmaceutical Engineering, Chemistry and Chemical Engineering, Central South University, Changsha 410083.

Objectives: Small interfering RNA (siRNA) can silence disease-related genes through sequence-specific RNA interference (RNAi). Cationic lipid-based liposomes effectively deliver nucleic acids into the cytoplasm but often exhibit significant toxicity. This study aims to synthesize a novel ionizable lipid, Nε-laruoyl-lysine amide (LKA), from natural amino acids, constructed LKA-based liposomes, and perform physicochemical characterization and cell-based experiments to systematically evaluate the potential of these ionizable lipid-based liposomes for nucleic acid delivery.

View Article and Find Full Text PDF

Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).

Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.

View Article and Find Full Text PDF

The scarecrow (scro) gene encodes a fly homolog of mammalian Nkx2.1 which is vital for early fly development as well as for optic lobe development. Previously, scro was reported to produce a circular RNA (circRNA) in addition to traditional mRNAs.

View Article and Find Full Text PDF

Background: Male factor infertility (MFI) is responsible for 50% of infertility cases and in 15% of the cases sperm is absent due to germ cell aplasia. Human induced pluripotent stem cell (hiPSC)-derived spermatogonial stem cells (hSSCs) could serve as an autologous germ cell source for MFI in patients with an insufficient sperm yield for assisted reproductive technology (ART). The endocannabinoid system (ECS) has been implicated to play a role in mouse embryonic stem cells (mESCs) and the human testicular environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!