Characterization of superparamagnetic iron oxide nanoparticles by asymmetrical flow-field-flow-fractionation.

Nanomedicine (Lond)

Contrast Media Research, Bayer Schering Pharma AG, Berlin, Germany.

Published: August 2008

Aims: The further development of diagnostic and therapeutic nanomedicines in research and their translation into clinical practice require appropriate characterization methods to ensure a reproducible quality and performance. However, many methods are insufficient for a detailed analysis of the particle size. The primary aim of the present work is to evaluate the application of asymmetrical flow-field-flow-fractionation (AF4) coupled with multiangle laser and dynamic light scattering (DLS) for the characterization of superparamagnetic iron oxide (SPIO) particles.

Methods: Eight carboxydextran-coated SPIO samples with different mean particle sizes, as determined by DLS, are investigated by means of an adequate AF4 separation method.

Results: In this work, we show that, with increasing sample particle size, as measured by DLS, the hydrodynamic and gyration radii obtained by the AF4 method increase respectively. We demonstrate that the applied AF4 method is able to separate nanoparticles of different sizes effectively, with superior reproducibility (relative standard deviation: <3%) and high accuracy (relative standard deviation: <10%). Furthermore, important characterization parameters that will affect the in vivo performance; namely, the shape factors and polydispersity indices, of all eight samples are presented.

Conclusion: The work describes the application of AF4/DLS/multiangle laser light scattering as a highly useful method for characterization of SPIO particles, enabling valuable information to be accessed in addition to that obtained by transmission-electron microscopy and DLS in batch mode.

Download full-text PDF

Source
http://dx.doi.org/10.2217/17435889.3.4.437DOI Listing

Publication Analysis

Top Keywords

characterization superparamagnetic
8
superparamagnetic iron
8
iron oxide
8
asymmetrical flow-field-flow-fractionation
8
particle size
8
af4 method
8
oxide nanoparticles
4
nanoparticles asymmetrical
4
flow-field-flow-fractionation aims
4
aims development
4

Similar Publications

Polydopamine Coated Nonspherical Magnetic Nanocluster for Synergistic Dual Magneto-Photothermal Cancer Therapy.

Polymers (Basel)

December 2024

NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain.

Local hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed.

View Article and Find Full Text PDF

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.

View Article and Find Full Text PDF

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

High-Resolution Free-Breathing Chemical-Shift-Encoded MRI for Characterizing Lymph Nodes in the Upper Abdomen.

Invest Radiol

January 2025

From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).

Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.

View Article and Find Full Text PDF

Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!