The congenital hereditary cataracts and microphthalmia in the miniature schnauzer dog are inherited by an autosomal recessive mode. To understand the genetic basis of these diseases, the authors purified and analyzed leukocyte deoxyribonucleic acid (DNA) from affected and normal animals using a candidate gene approach. Because the genes that encode the lens-specific proteins, specifically, alpha, beta, and gamma crystallins and the membrane protein (MP26), are known to maintain the structure and function of the lens, the authors used complimentary DNA (cDNA) fragments that corresponded to the above genes to search for the mutations at their loci in the affected animals. They found no evidence of the gene deletion and rearrangement in any of the five loci. In addition, the hybridizable sequences of the dog DNA to the specific probes for the human chromosome 4 and 18 loci, which are reported to be involved in the abnormality of the human eye, seem to be unaffected. These data support the notion that the hereditary cataracts and microphthalmia in the dog may be associated with genes other than those reported for several animal systems.
Download full-text PDF |
Source |
---|
Genes (Basel)
January 2025
Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil.
Background: Nance-Horan syndrome (NHS) is a rare, frequently underdiagnosed, X-linked disease caused by mutations in the NHS gene. In males, it causes bilateral dense pediatric cataracts, dental anomalies, and facial dysmorphisms. Females traditionally have a more subtle phenotype with discrete lens opacities as an isolated feature.
View Article and Find Full Text PDFClin Exp Ophthalmol
January 2025
Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Hereditary vitreoretinopathies (HVRs), also known as hereditary vitreoretinal degenerations comprise a heterogeneous group of inherited disorders of the retina and vitreous, collectively and variably characterised by vitreal abnormalities, such as fibrillary condensations, liquefaction or membranes, as well as peripheral retinal abnormalities, vascular changes in some, an increased risk of retinal detachment and early-onset cataract formation. The pathology often involves the vitreoretinal interface in some, while the major underlying abnormality is vascular in others. Recent advances in molecular diagnosis and identification of the responsible genes and have improved our understanding of the pathogenesis, risks and management of the HVRs.
View Article and Find Full Text PDFNeuromuscul Disord
December 2024
University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA.
Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.
View Article and Find Full Text PDFJ Thromb Haemost
December 2024
Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: Myosin heavy chain 9-related diseases (MYH9-RDs) are rare autosomal dominant platelet disorders characterized by macrothrombocytopenia and leukocyte inclusion bodies. They can manifest with nonhematological complications, including deafness, nephropathy, or cataracts. Due to its rarity and its similar clinical presentation with immune thrombocytopenia (ITP), MYH9-RD is often misdiagnosed as ITP, leading to inappropriate treatment and delayed management of complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!