The metal-organic framework, MIL-53, can have a structural transition from an open-pored to a closed-pored structure by adsorbing different guest molecules. The aid of guest molecules is believed to be necessary to initiate this "breathing" effect. Using both neutron powder diffraction and inelastic neutron scattering techniques, we find that MIL-53 exhibits a reversible structural transition between an open-pored and a closed-pored structure as a function of temperature without the presence of any guest molecules. Surprisingly, this structural transition shows a significant temperature hysteresis: the transition from the open-pored to closed-pored structure occurs at approximately 125 to 150 K, while the transition from the closed-pored to open-pored structure occurs around 325 to 375 K. To our knowledge, this is first observation of such a large temperature hysteresis of a structural transition in metal-organic frameworks. We also note that the transition from the open to closed structure at low temperature shows very slow kinetics. An ab initio computer simulation is employed to investigate the possible mechanism of the transition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja803669wDOI Listing

Publication Analysis

Top Keywords

structural transition
20
temperature hysteresis
12
transition open-pored
12
open-pored closed-pored
12
closed-pored structure
12
guest molecules
12
transition
9
reversible structural
8
large temperature
8
structure occurs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!