Mitochondrial trifunctional protein (MTP) comprises heterooctamer alpha4beta4 and a deficiency in this protein causes a mitochondrial long-chain beta-oxidation defect. Here, we describe the molecular basis of an MTPbeta-subunit deficiency in a Japanese neonate. Mutation screening at the genomic level including all exons and exon-intron boundaries identified a novel c.1136A>G (H346R) mutation in exon 13 of the maternal allele, but none in the paternal allele. Analysis by RT-PCR identified paternal-specific 106- and 56-bp intronic insertions between exons 7 and 8, which introduced premature terminations. This intronic exonization was caused by a deep intronic mutation in intron 7 on the paternal allele that generates a cryptic splice donor site. This is the first report of a deep intronic mutation in MTP deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2008.06.013DOI Listing

Publication Analysis

Top Keywords

deep intronic
12
japanese neonate
8
mitochondrial trifunctional
8
trifunctional protein
8
paternal allele
8
intronic mutation
8
intronic
5
study deep
4
intronic sequence
4
sequence exonization
4

Similar Publications

In 2021, the Indian Undiagnosed Diseases Program was initiated for patients without a definite diagnosis despite extensive evaluation in four participating sites. Between February 2021 and March 2023, a total of 88 patients were recruited and underwent deep phenotyping. A uniform methodology for data re-analysis was implemented as the first step prior to conducting additional genomic testing.

View Article and Find Full Text PDF

The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.

PLoS Comput Biol

January 2025

Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America.

Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources.

View Article and Find Full Text PDF

Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs).

View Article and Find Full Text PDF

Mosaicism and intronic variants in RB1 gene revealed by next generation sequencing in a cohort of Spanish retinoblastoma patients.

Exp Eye Res

January 2025

Genetic Diagnosis Unit, Institute for Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), Madrid, Spain; CIBER of Rare Diseases (CIBERER), U758. Institute of Health Carlos III (ISCIII), Madrid, Spain.

Constitutional variants in the RB1 gene predispose individuals to the development of Retinoblastoma (RB) and the occurrence of second tumors in adulthood. Detection of causal RB1 gene variants is essential to establish the genetic diagnosis and to performing familial studies and counseling. In our cohort of 579 Spanish RB patients, 15% of cases suspected to have a genetic origin remained negative after traditional Sanger sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) of RB1 gene, likely due to the possibility of mosaicism or non-coding variants.

View Article and Find Full Text PDF

Stargardt disease (STGD1) is an autosomal recessive disorder caused by pathogenic variants in that affects the retina and is characterised by progressive central vision loss. The onset of disease manifestations varies from childhood to early adulthood. Whole exome (WES), whole gene, and whole genome sequencing (WGS) were performed for a patient with STGD1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!